Cardiovascular Imaging Applications, Implementations, and Challenges Using Novel Magnetic Particle Imaging
Abstract
1. Introduction
2. History and Development of MPI
2.1. History of MPI
2.2. Fundamental Principles and Mechanics
2.3. Brownian vs. Néel Relaxation
2.4. Tracers—SPIONs
2.5. Comparison with Other Imaging Modalities
3. Potential Applications of MPI in Cardiac Imaging
- (A) SPION Injection:SPIONs are injected intravenously and circulate within the bloodstream.
- (B) Field Encoding:Within the MPI scanner, oscillating magnetic fields generated by gradient coils spatially encode the nanoparticles’ magnetic responses.
- (C) Image Reconstruction:The resulting voltage signals are detected and computationally reconstructed into a spatial image representing tracer distribution.
- (D) Hybrid Overlay:The reconstructed MPI image is co-registered and overlaid with structural MRI data to create a hybrid image that combines functional tracer localization with anatomical context.
4. Evolution and Improvement of MPI Tracers and Hardware Systems
5. Expanding the Capabilities of MPI
6. Challenges and Path Toward Clinical Translation
7. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahlborg, M.; Buzug, T.M.; Wegner, F. Invited Review Paper: Biochemical and Biophysical Research Communications 20 Years of Magnetic Particle Imaging–From Patents to Patients. Biochem. Biophys. Res. Commun. 2025, 781, 152510. [Google Scholar] [CrossRef]
- Saritas, E.U.; Goodwill, P.W.; Croft, L.R.; Konkle, J.J.; Lu, K.; Zheng, B.; Conolly, S.M. Magnetic particle imaging (MPI) for NMR and MRI researchers. J. Magn. Reson. 2013, 229, 116–126. [Google Scholar] [CrossRef]
- Huang, Y.; Hsu, J.C.; Koo, H.; Cormode, D.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 2022, 12, 796. [Google Scholar] [CrossRef]
- Weizenecker, J.; Borgert, J.; Gleich, B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 2007, 52, 6363. [Google Scholar] [CrossRef]
- Weizenecker, J.; Gleich, B.; Rahmer, J.; Dahnke, H.; Borgert, J. Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 2009, 54, L1. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakamura, T.; Higashi, O.; Enpuku, K. Effect of viscosity on the AC magnetization of magnetic nanoparticles under different AC excitation fields. J. Magn. Magn. Mater. 2019, 471, 334–339. [Google Scholar] [CrossRef]
- Tay, Z.W.; Chandrasekharan, P.; Fellows, B.D.; Arrizabalaga, I.R.; Yu, E.; Olivo, M.; Conolly, S.M. Magnetic particle imaging: An emerging modality with prospects in diagnosis, targeting and therapy of cancer. Cancers 2021, 13, 5285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, X.; Liao, H.; Liang, Z.; Li, F.; Tian, J.; Ling, D. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020, 14, 2053–2062. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Han, S.R.; Kang, Y.H.; Lee, E.-J.; Kim, E.-G.; Hong, H.; Jeong, J.-C.; Lee, M.-S.; Lee, S.-H.; Song, D.-Y. In vivo preclinical tumor-specific imaging of superparamagnetic iron oxide nanoparticles using magnetic particle imaging for cancer diagnosis. Int. J. Nanomed. 2022, 17, 3711. [Google Scholar] [CrossRef] [PubMed]
- Hartung, V.; Gruschwitz, P.; Augustin, A.M.; Grunz, J.-P.; Kleefeldt, F.; Peter, D.; Ergün, S.; Günther, J.; Reichl, T.; Kampf, T. Magnetic particle imaging angiography of the femoral artery in a human cadaveric perfusion model. Commun. Med. 2025, 5, 75. [Google Scholar] [CrossRef]
- Vogel, P.; Rückert, M.; Klauer, P.; Kullmann, W.; Jakob, P.; Behr, V. First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys. Med. Biol. 2016, 61, 6620. [Google Scholar] [CrossRef] [PubMed]
- Chava, R.; Assis, F.; Herzka, D.; Kolandaivelu, A. Segmented radial cardiac MRI during arrhythmia using retrospective electrocardiogram and respiratory gating. Magn. Reson. Med. 2019, 81, 1726–1738. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, D.; Burstein, D.; Edelman, R. First-pass cardiac perfusion: Evaluation with ultrafast MR imaging. Radiology 1990, 174, 757–762. [Google Scholar] [CrossRef]
- Feng, X.; Gao, P.; Li, Y.; Hui, H.; Jiang, J.; Xie, F.; Tian, J. First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung. Bioeng. Transl. Med. 2024, 9, e10626. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Jeffris, K.E.; Elaine, Y.Y.; Zheng, B.; Goodwill, P.W.; Nahid, P.; Conolly, S.M. First in vivo magnetic particle imaging of lung perfusion in rats. Phys. Med. Biol. 2017, 62, 3510. [Google Scholar] [CrossRef]
- Mohtashamdolatshahi, A.; Kratz, H.; Kosch, O.; Hauptmann, R.; Stolzenburg, N.; Wiekhorst, F.; Sack, I.; Hamm, B.; Taupitz, M.; Schnorr, J. In vivo magnetic particle imaging: Angiography of inferior vena cava and aorta in rats using newly developed multicore particles. Sci. Rep. 2020, 10, 17247. [Google Scholar] [CrossRef]
- Tong, W.; Zhang, Y.; Hui, H.; Feng, X.; Ning, B.; Yu, T.; Wang, W.; Shang, Y.; Zhang, G.; Zhang, S. Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 2023, 90, 104509. [Google Scholar] [CrossRef]
- Vaalma, S.; Rahmer, J.; Panagiotopoulos, N.; Duschka, R.L.; Borgert, J.; Barkhausen, J.; Vogt, F.M.; Haegele, J. Magnetic particle imaging (MPI): Experimental quantification of vascular stenosis using stationary stenosis phantoms. PLoS ONE 2017, 12, e0168902. [Google Scholar] [CrossRef]
- Wegner, F.; von Gladiss, A.; Haegele, J.; Grzyska, U.; Sieren, M.M.; Stahlberg, E.; Oechtering, T.H.; Lüdtke-Buzug, K.; Barkhausen, J.; Buzug, T.M. Magnetic particle imaging: In vitro signal analysis and lumen quantification of 21 endovascular stents. Int. J. Nanomed. 2021, 16, 213–221. [Google Scholar] [CrossRef]
- Haegele, J.; Rahmer, J.; Gleich, B.; Borgert, J.; Wojtczyk, H.; Panagiotopoulos, N.; Buzug, T.M.; Barkhausen, J.; Vogt, F.M. Magnetic particle imaging: Visualization of instruments for cardiovascular intervention. Radiology 2012, 265, 933–938. [Google Scholar] [CrossRef]
- Haegele, J.; Biederer, S.; Wojtczyk, H.; Gräser, M.; Knopp, T.; Buzug, T.M.; Barkhausen, J.; Vogt, F.M. Toward cardiovascular interventions guided by magnetic particle imaging: First instrument characterization. Magn. Reson. Med. 2013, 69, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Haegele, J.; Panagiotopoulos, N.; Cremers, S.; Rahmer, J.; Franke, J.; Duschka, R.L.; Vaalma, S.; Heidenreich, M.; Borgert, J.; Borm, P. Magnetic particle imaging: A resovist based marking technology for guide wires and catheters for vascular interventions. IEEE Trans. Med. Imaging 2016, 35, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Haegele, J.; Vaalma, S.; Panagiotopoulos, N.; Barkhausen, J.; Vogt, F.M.; Borgert, J.; Rahmer, J. Multi-color magnetic particle imaging for cardiovascular interventions. Phys. Med. Biol. 2016, 61, N415. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Jia, G.; Peng, J.; Huang, L.; Liang, X.; Zhang, H.; Liu, Y.; Zhang, B.; Zhang, Y.; Sun, M. Relaxation spectral analysis in multi-contrast vascular magnetic particle imaging. Med. Phys. 2023, 50, 4651–4663. [Google Scholar] [CrossRef]
- Xie, X.; Zhai, J.; Zhou, X.; Guo, Z.; Lo, P.C.; Zhu, G.; Chan, K.W.; Yang, M. Magnetic particle imaging: From tracer design to biomedical applications in vasculature abnormality. Adv. Mater. 2024, 36, 2306450. [Google Scholar] [CrossRef]
- Bakenecker, A.C.; Ahlborg, M.; Debbeler, C.; Kaethner, C.; Buzug, T.M.; Lüdtke-Buzug, K. Magnetic particle imaging in vascular medicine. Innov. Surg. Sci. 2018, 3, 179–192. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J.; Borgert, J. Experimental results on fast 2D-encoded magnetic particle imaging. Phys. Med. Biol. 2008, 53, N81. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J.; Timminger, H.; Bontus, C.; Schmale, I.; Rahmer, J.; Schmidt, J.; Kanzenbach, J.; Borgert, J. Fast MPI demonstrator with enlarged field of view. In Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden, 1–7 May 2010; pp. 1920–1970. [Google Scholar]
- Schmale, I.; Rahmer, J.; Gleich, B.; Kanzenbach, J.; Schmidt, J.; Bontus, C.; Woywode, O.; Borgert, J. First phantom and in vivo MPI images with an extended field of view. In Proceedings of the Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging, Lake Buena Vista, FL, USA, 13–16 February 2011; pp. 263–268. [Google Scholar]
- Harvell-Smith, S.; Thanh, N.T.K. Magnetic particle imaging: Tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale 2022, 14, 3658–3697. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Rahmer, J.; Weizenecker, J.; Gleich, B.; Borgert, J. Signal encoding in magnetic particle imaging: Properties of the system function. BMC Med. Imaging 2009, 9, 4. [Google Scholar] [CrossRef]
- Goodwill, P.W.; Lu, K.; Zheng, B.; Conolly, S.M. An x-space magnetic particle imaging scanner. Rev. Sci. Instrum. 2012, 83, 033708. [Google Scholar] [CrossRef]
- Them, K. On magnetic dipole–dipole interactions of nanoparticles in magnetic particle imaging. Phys. Med. Biol. 2017, 62, 5623. [Google Scholar] [CrossRef] [PubMed]
- Faldum, M.; Bachmayr, M.; Schulz, V.; Schrank, F. Efficient solvers for coupled Brown-Néel Fokker-Planck equations. Int. J. Magn. Part Imaging IJMPI 2025, 11, 890. [Google Scholar]
- Weizenecker, J. The fokker–planck equation for coupled brown–néel-rotation. Phys. Med. Biol. 2018, 63, 035004. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Zhang, P.; An, Y.; Hui, H.; Tian, J. Modified Jiles–Atherton model-based system matrix generation method for magnetic particle imaging. IEEE Trans. Instrum. Meas. 2024, 73, 1004309. [Google Scholar] [CrossRef]
- Murase, K.; Hiratsuka, S.; Song, R.; Takeuchi, Y. Development of a system for magnetic particle imaging using neodymium magnets and gradiometer. Jpn. J. Appl. Phys. 2014, 53, 067001. [Google Scholar] [CrossRef]
- Borgert, J.; Schmidt, J.D.; Schmale, I.; Rahmer, J.; Bontus, C.; Gleich, B.; David, B.; Eckart, R.; Woywode, O.; Weizenecker, J. Fundamentals and applications of magnetic particle imaging. J. Cardiovasc. Comput. Tomogr. 2012, 6, 149–153. [Google Scholar] [CrossRef]
- Arami, H.; Ferguson, R.; Khandhar, A.P.; Krishnan, K.M. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med. Phys. 2013, 40, 071904. [Google Scholar] [CrossRef]
- Bente, K.; Weber, M.; Graeser, M.; Sattel, T.F.; Erbe, M.; Buzug, T.M. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. IEEE Trans. Med. Imaging 2014, 34, 644–651. [Google Scholar] [CrossRef]
- Buzug, T.M.; Borgert, J. Magnetic Particle Imaging: A Novel SPIO Nanoparticle Imaging Technique; Springer Science & Business Media: Berlin, Germany, 2012; Volume 140. [Google Scholar]
- Knopp, T.; Buzug, T.M. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Eberbeck, D.; Wiekhorst, F.; Wagner, S.; Trahms, L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl. Phys. Lett. 2011, 98, 182502. [Google Scholar] [CrossRef]
- Ferguson, R.M.; Khandhar, A.P.; Kemp, S.J.; Arami, H.; Saritas, E.U.; Croft, L.R.; Konkle, J.; Goodwill, P.W.; Halkola, A.; Rahmer, J. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans. Med. Imaging 2014, 34, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Pablico-Lansigan, M.H.; Situ, S.F.; Samia, A.C.S. Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013, 5, 4040–4055. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; von See, M.P.; Yu, E.; Gunel, B.; Lu, K.; Vazin, T.; Schaffer, D.V.; Goodwill, P.W.; Conolly, S.M. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 2016, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Bulte, J.W. Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications. Adv. Drug Deliv. Rev. 2019, 138, 293–301. [Google Scholar] [CrossRef]
- Kaul, M.G.; Mummert, T.; Jung, C.; Salamon, J.; Khandhar, A.P.; Ferguson, R.M.; Kemp, S.J.; Ittrich, H.; Krishnan, K.M.; Adam, G. In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist. Phys. Med. Biol. 2017, 62, 3454. [Google Scholar] [CrossRef]
- Vogel, P.; Rückert, M.A.; Klauer, P.; Kullmann, W.H.; Jakob, P.M.; Behr, V.C. Traveling wave magnetic particle imaging. IEEE Trans. Med. Imaging 2013, 33, 400–407. [Google Scholar] [CrossRef]
- Vogel, P.; Klauer, P.; Rückert, M.; Bley, T.; Kullmann, W.; Jakob, P.; Behr, V. Dynamic linear gradient array for traveling wave magnetic particle imaging. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Vogel, P.; Lother, S.; Rückert, M.A.; Kullmann, W.H.; Jakob, P.M.; Fidler, F.; Behr, V.C. MRI meets MPI: A bimodal MPI-MRI tomograph. IEEE Trans. Med. Imaging 2014, 33, 1954–1959. [Google Scholar] [CrossRef]
- Vogel, P.; Rückert, M.A.; Klauer, P.; Kullmann, W.H.; Jakob, P.M.; Behr, V.C. Rotating slice scanning mode for traveling wave MPI. IEEE Trans. Magn. 2015, 51, 1–3. [Google Scholar] [CrossRef]
- Martí-Bonmatí, L.; Sopena, R.; Bartumeus, P.; Sopena, P. Multimodality imaging techniques. Contrast Media Mol. Imaging 2010, 5, 180–189. [Google Scholar] [CrossRef]
- Kaul, M.G.; Salamon, J.; Knopp, T.; Ittrich, H.; Adam, G.; Weller, H.; Jung, C. Magnetic particle imaging for in vivo blood flow velocity measurements in mice. Phys. Med. Biol. 2018, 63, 064001. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, P.; Gdaniec, N.; Sedlacik, J.; Forkert, N.D.; Szwargulski, P.; Graeser, M.; Adam, G.; Kaul, M.G.; Krishnan, K.M.; Ferguson, R.M. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 2017, 11, 10480–10488. [Google Scholar] [CrossRef] [PubMed]
- Franke, J.; Baxan, N.; Lehr, H.; Heinen, U.; Reinartz, S.; Schnorr, J.; Heidenreich, M.; Kiessling, F.; Schulz, V. Hybrid MPI-MRI system for dual-modal in situ cardiovascular assessments of real-time 3D blood flow quantification—A pre-clinical in vivo feasibility investigation. IEEE Trans. Med. Imaging 2020, 39, 4335–4345. [Google Scholar] [CrossRef] [PubMed]
- Kranemann, T.C.; Ersepke, T.; Schmitz, G. Towards the integration of an MPI compatible ultrasound transducer. Int. J. Magn. Part. Imaging IJMPI 2017, 3, 86. [Google Scholar]
- Haegele, J.; Duschka, R.L.; Graeser, M.; Schaecke, C.; Panagiotopoulos, N.; Lüdtke-Buzug, K.; Buzug, T.M.; Barkhausen, J.; Vogt, F.M. Magnetic particle imaging: Kinetics of the intravascular signal in vivo. Int. J. Nanomed. 2014, 9, 4203–4209. [Google Scholar] [CrossRef]
- Khandhar, A.P.; Ferguson, R.M.; Arami, H.; Kemp, S.J.; Krishnan, K.M. Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo magnetic particle imaging. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Graeser, M.; Knopp, T.; Szwargulski, P.; Friedrich, T.; Von Gladiß, A.; Kaul, M.; Krishnan, K.M.; Ittrich, H.; Adam, G.; Buzug, T.M. Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil. Sci. Rep. 2017, 7, 6872. [Google Scholar] [CrossRef]
- Gräser, M.; Thieben, F.; Szwargulski, P.; Werner, F.; Gdaniec, N.; Boberg, M.; Griese, F.; Möddel, M.; Ludewig, P.; Van De Ven, D. Human-sized magnetic particle imaging for brain applications. Nat. Commun. 2019, 10, 1936. [Google Scholar] [CrossRef]
- Goodwill, P.W.; Conolly, S.M. Multidimensional x-space magnetic particle imaging. IEEE Trans. Med. Imaging 2011, 30, 1581–1590. [Google Scholar] [CrossRef]
- Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. [Google Scholar] [CrossRef]
- Ferguson, R.M.; Khandhar, A.P.; Krishnan, K.M. Tracer design for magnetic particle imaging. J. Appl. Phys. 2012, 111, 07B318. [Google Scholar] [CrossRef] [PubMed]
- Starmans, L.W.; Moonen, R.P.; Aussems-Custers, E.; Daemen, M.J.; Strijkers, G.J.; Nicolay, K.; Grüll, H. Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis. PLoS ONE 2015, 10, e0119257. [Google Scholar] [CrossRef] [PubMed]
- Bleul, R.; Baki, A.; Freese, C.; Paysen, H.; Kosch, O.; Wiekhorst, F. Continuously manufactured single-core iron oxide nanoparticles for cancer theranostics as valuable contribution in translational research. Nanoscale Adv. 2020, 2, 4510–4521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35. [Google Scholar]
- Makela, A.V.; Gaudet, J.M.; Schott, M.A.; Sehl, O.C.; Contag, C.H.; Foster, P.J. Magnetic particle imaging of macrophages associated with cancer: Filling the voids left by iron-based magnetic resonance imaging. Mol. Imaging Biol. 2020, 22, 958–968. [Google Scholar] [CrossRef]
- Nejadnik, H.; Pandit, P.; Lenkov, O.; Lahiji, A.P.; Yerneni, K.; Daldrup-Link, H.E. Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells. Mol. Imaging Biol. 2019, 21, 465–472. [Google Scholar] [CrossRef]
- Kaul, M.; Weber, O.; Heinen, U.; Reitmeier, A.; Mummert, T.; Jung, C.; Raabe, N.; Knopp, T.; Ittrich, H.; Adam, G. Combined preclinical magnetic particle imaging and magnetic resonance imaging: Initial results in mice. RöFo-Fortschritte Auf Dem Geb. Röntgenstrahlen Und Bildgeb. Verfahr. 2015, 187, 347–352. [Google Scholar] [CrossRef]
- Tong, W.; Hui, H.; Shang, W.; Zhang, Y.; Tian, F.; Ma, Q.; Yang, X.; Tian, J.; Chen, Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 2021, 11, 506. [Google Scholar] [CrossRef]
- Rodríguez, E.; Nilges, M.; Weissleder, R.; Chen, J.W. Activatable magnetic resonance imaging agents for myeloperoxidase sensing: Mechanism of activation, stability, and toxicity. J. Am. Chem. Soc. 2010, 132, 168–177. [Google Scholar] [CrossRef]
- Sugiyama, S.; Okada, Y.; Sukhova, G.K.; Virmani, R.; Heinecke, J.W.; Libby, P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am. J. Pathol. 2001, 158, 879–891. [Google Scholar] [CrossRef]
- Knopp, T.; Biederer, S.; Sattel, T.F.; Erbe, M.; Buzug, T.M. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Trans. Med. Imaging 2011, 30, 1284–1292. [Google Scholar] [CrossRef]
- Goodwill, P.W.; Scott, G.C.; Stang, P.P.; Conolly, S.M. Narrowband magnetic particle imaging. IEEE Trans. Med. Imaging 2009, 28, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.; Ludwig, F.; Kuhlmann, C.; Wawrzik, T. Magnetic particle imaging scanner with 10-kHz drive-field frequency. Biomed. Tech./Biomed. Eng. 2013, 58, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Weizenecker, J.; Gleich, B.; Borgert, J. Magnetic particle imaging using a field free line. J. Phys. D Appl. Phys. 2008, 41, 105009. [Google Scholar] [CrossRef]
- Vogel, P.; Rückert, M.; Greiner, C.; Günther, J.; Reichl, T.; Kampf, T.; Bley, T.; Behr, V.; Herz, S. iMPI: Portable human-sized magnetic particle imaging scanner for real-time endovascular interventions. Sci. Rep. 2023, 13, 10472. [Google Scholar] [CrossRef]
- Goodwill, P.W.; Conolly, S.M. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 2010, 29, 1851–1859. [Google Scholar] [CrossRef]
- Bulte, J.W.; Kraitchman, D.L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. Vivo 2004, 17, 484–499. [Google Scholar] [CrossRef]
- Franke, J.; Heinen, U.; Lehr, H.; Weber, A.; Jaspard, F.; Ruhm, W.; Heidenreich, M.; Schulz, V. System characterization of a highly integrated preclinical hybrid MPI-MRI scanner. IEEE Trans. Med. Imaging 2016, 35, 1993–2004. [Google Scholar] [CrossRef]
- Nigam, S.; Gjelaj, E.; Wang, R.; Wei, G.W.; Wang, P. Machine learning and deep learning applications in magnetic particle imaging. J. Magn. Reson. Imaging 2025, 61, 42–51. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Y.; Zhao, M.; Xu, L.; Zhong, J. Image reconstruction for magnetic particle imaging based on sparse representation and deep learning. IEEE Trans. Instrum. Meas. 2024, 73, 4504709. [Google Scholar] [CrossRef]
- Yang, X.; Shao, G.; Zhang, Y.; Wang, W.; Qi, Y.; Han, S.; Li, H. Applications of magnetic particle imaging in biomedicine: Advancements and prospects. Front. Physiol. 2022, 13, 898426. [Google Scholar] [CrossRef]




| Imaging Modality | Spatial Resolution | Temporal Resolution (Acquisition Time) | Quantitation | Hazard |
|---|---|---|---|---|
| CT | ~0.5 mm | ~1 s | Yes | Plain X-ray radiation |
| MRI | ~1 mm | ~1 s–1 h | No | Tissue Heating, Peripheral nerve stimulation, Magnetohydrodynamic effects, Interactions with implants, etc. |
| PET | ~4 mm | ~1 min | Yes | Ionizing γ Radiation |
| SPECT | ~10 mm | ~1 min | Yes | Ionizing γ Radiation |
| MPI | <1 mm | <0.1 s | Yes | Tissue heating, PNS *, Interactions with implants |
| Name | Year | Application | Experiment Type | Imaging Tracer | Conclusion | Ref. |
|---|---|---|---|---|---|---|
| Weizenecker et al. | 2009 | Features of a beating mouse heart revealed by the first in vivo 3D real-time MPI a images. | In Vivo | Resovist (SPION) b ferucarbotran) | A beating mouse heart can be imaged in vivo using MPI with high temporal and spatial resolutions. | [5] |
| Vogel et al. | 2016 | The viability of resolving the dynamics of a beating mouse heart in vivo utilizing a TWMPI c scanner. | In Vivo | Resovist (SPION ferucarbotran) | The dynamics of a beating mouse heart can be resolved with a high enough temporal resolution by a TWMPI scanner. | [11] |
| Kaul et al. | 2017 | Evaluating the performance of a new tracer, LS-008, for MPI against the standard Resovist to improve diagnostic imaging. | In Vitro and In Vivo | LS-008 & Resovist | LS-008 significantly improves MPI with better image quality, clearer vascular delineation, and longer circulation times, enhancing clinical imaging. | [49] |
| Name | Year | Application | Experiment Type | Imaging Tracer | Conclusion | Ref. |
|---|---|---|---|---|---|---|
| Haegele et al. | 2014 | Evaluation of the blood half-life of two different types of Resovist in MPI a to assess their applicability in cardiovascular MPI | In vivo | Resovist (SPION) b ferucarbotran) | Because the MPI signal from Resovist fades quickly, it is a suboptimal tracer for applications needing a longer presence of the MPI tracer in the blood pool. | [59] |
| Khandhar et al. | 2015 | Evaluation of the effects of PEG c-based coatings on SPION stability and blood half-life. | In vivo | PEG-coated SPIONs PMAO-20kPEG | PEG coatings significantly improve colloidal stability, reduce protein adsorption, and prevent SPION aggregation, leading to a longer blood half-life of SPION. | [60] |
| Graeser et al. | 2017 | Enhancement of MPI sensitivity by developing a specialized receiver coil and integrating it into a commercial MPI scanner. | In vivo | MPI-tailored contrast agent | Integrating the advanced receiver coil into MPI enhances its sensitivity and precision as a rapid imaging modality suitable for real-time medical applications. | [61] |
| Graeser et al. | 2019 | Assessment of human-sized MPI’s sensitivity, spatial resolution, and stroke detection capability for brain applications | In vivo | Perimag | Human-sized MPI detects dynamic concentration changes and allows access to brain perfusion quantitatively in short intervals. | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dervis, M.; Marey, A.; Toumaj, S.; Qafesha, R.M.; Mashaly, D.; Afify, A.; Langham, A.; Jambawalikar, S.; Umair, M. Cardiovascular Imaging Applications, Implementations, and Challenges Using Novel Magnetic Particle Imaging. Bioengineering 2025, 12, 1235. https://doi.org/10.3390/bioengineering12111235
Dervis M, Marey A, Toumaj S, Qafesha RM, Mashaly D, Afify A, Langham A, Jambawalikar S, Umair M. Cardiovascular Imaging Applications, Implementations, and Challenges Using Novel Magnetic Particle Imaging. Bioengineering. 2025; 12(11):1235. https://doi.org/10.3390/bioengineering12111235
Chicago/Turabian StyleDervis, Muhiddin, Ahmed Marey, Shiva Toumaj, Ruaa Mustafa Qafesha, Doaa Mashaly, Ahmed Afify, Anna Langham, Sachin Jambawalikar, and Muhammad Umair. 2025. "Cardiovascular Imaging Applications, Implementations, and Challenges Using Novel Magnetic Particle Imaging" Bioengineering 12, no. 11: 1235. https://doi.org/10.3390/bioengineering12111235
APA StyleDervis, M., Marey, A., Toumaj, S., Qafesha, R. M., Mashaly, D., Afify, A., Langham, A., Jambawalikar, S., & Umair, M. (2025). Cardiovascular Imaging Applications, Implementations, and Challenges Using Novel Magnetic Particle Imaging. Bioengineering, 12(11), 1235. https://doi.org/10.3390/bioengineering12111235

