Automatic Tuning Method for Quadrupole Mass Spectrometer Based on Improved Differential Evolution Algorithm
Abstract
1. Introduction
2. Methods
2.1. Differential Evolution Algorithm
| Algorithm 1. Differential Evolution Algorithm |
| Input: Set the population size N, and the boundaries xub and xlb. Step 1 (Initialization): Randomly generate the population and obtain the corresponding fitness values. |
xj,i,0 = xlbj + rand[0,1] × (xubj − xlbj)
|
| Here, rand [0,1] represents the uniformly generated random number within the range [0,1]. Step 2 (Mutation): A mutant vector is generated according to the mutation formula. Step 3 (Crossover): A trial vector is generated in crossover between the target vector and mutant vector using a crossover probability CR. If randb(j) ≤ CR or j = rnbr(i), then uj,i,g+1 = vj,i,g+1; if randb(j) > CR and j ≠ rnbr(i), then uj,i,g+1 = xj,i,g+1, (j = 1,2,…,D); Here, randb(j) represents the j-th value of the random number sequence generated within the range of [0,1]; CR represents the crossover operator, whose range of values is [0,1]; rnbr(i) represents the random number sequence generated from [1, D], thereby achieving the acquisition of at least one parameter value from the parameter vector to the mutated parameter vector, and thereby achieving the update of the parameter vector rather than keeping it unchanged. Step 4 (Boundary Condition Handling): After the crossover operation, check whether the population exceeds the position boundaries. If it does, set it to the relevant position boundaries. If uj,i,g+1 > xubj, then uj,i,g+1 = xubj; If uj,i,g+1 < xlbj, then uj,i,g+1 = xlbj. Here, xlbj and xubj are the lower and upper limits of the boundaries respectively, and j is the j-th dimension of the vector. Step 5 (Selection): Calculate the fitness values and perform the selection operation. If f(ui,g+1) < f(xi,g), xi,g+1 = ui,g+1; If f(ui,g+1) < f(xi,g), xi,g+1 = xi,g Step 6: Check whether the iteration termination condition is met. If it is, terminate the iteration. If not, return to Step 2. Output: The global optimal vector and fitness value. |
2.2. Improved Differential Evolution Algorithm
2.3. Automatic Tuning Method Based on the Improved Differential Evolution Algorithm
3. Results and Discussion
3.1. Benchmark Function Test
3.2. Application of Automatic Tuning Method
3.2.1. Optimization of a Single Mass Spectral Peak
3.2.2. Automatic Tuning of the Ion Source and Lens Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.-G.; Yang, H.; Cheng, X.-L.; Liu, L.; Qin, Y.; Wang, Q.; Qi, L.-W.; Li, P. Direct analysis of 18 flavonol glycosides, aglycones and terpene trilactones in Ginkgo biloba tablets by matrix solid phase dispersion coupled with ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry. J. Pharm. Biomed. Anal. 2014, 97, 123–128. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, N.; Hu, Z.; Wu, P.; Mao, J.; Zhang, J.; Cai, Z.; Wang, Z.; Wang, J. A novel application of ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry for the rapid quantification of acrylamide in coffee. J. Food Compos. Anal. 2025, 141, 107357. [Google Scholar] [CrossRef]
- Jensen, J.T.; Waites, B.T.; Boniface, E.R.; McCrimmon, S.; Blue, S.; Erikson, D.W. Development and validation of an expanded panel of progestins using liquid chromatography-tandem triple quadrupole mass spectrometry to monitor protocol compliance in hormonal contraceptive pharmacokinetic/pharmacodynamic studies. Contraception 2023, 126, 110130. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Hu, Y.; Shui, F.; Tang, J.; Yu, Y.; Zheng, G.; Zeng, J. Development of a highly sensitive field-amplified capillary electrophoresis tandem triple quadrupole mass spectrometry for the quantification of trace methamphetamine in sewage. J. Chromatogr. A 2025, 1750, 465920. [Google Scholar] [CrossRef]
- Sanz Rodriguez, E.; Wood, K.; Haddad, P.R.; Paull, B. Boron quantification using ion chromatography tandem triple quadrupole mass spectrometry. Application to retention analysis in boron-treated wood. Talanta 2024, 268, 125377. [Google Scholar] [CrossRef]
- Buckley, C.; MacHale, C.; Bones, J. Quantitative analysis of residual aurintricarboxylic acid in biotherapeutic process streams using liquid chromatography triple quadrupole mass spectrometry. J. Pharm. Biomed. Anal. 2024, 238, 115798. [Google Scholar] [CrossRef]
- Storn, R. Differential evolution design of an IIR-filter. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC 96), Nagoya, Japan, 20–22 May 1996; pp. 268–273. [Google Scholar]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2010, 33, 61–106. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]
- Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex. Eng. J. 2022, 61, 3831–3872. [Google Scholar] [CrossRef]
- Reyes-Davila, E.; Haro, E.H.; Casas-Ordaz, A.; Oliva, D.; Avalos, O. Differential Evolution: A Survey on Their Operators and Variants. Arch. Comput. Method Eng. 2025, 32, 83–112. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Al-Dabbagh, R.D.; Kinsheel, A.; Mekhilef, S.; Baba, M.S.; Shamshirband, S. System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Adv. Eng. Softw. 2014, 78, 60–66. [Google Scholar] [CrossRef]
- Chamorro, H.R.; Riano, I.; Gerndt, R.; Zelinka, I.; Gonzalez-Longatt, F.; Sood, V.K. Synthetic inertia control based on fuzzy adaptive differential evolution. Int. J. Electr. Power Energy Syst. 2019, 105, 803–813. [Google Scholar] [CrossRef]
- Awda, Y.; Alowaifeer, M. Adaptive optimization of virtual synchronous generator based on fuzzy logic control and differential evolution. Ain Shams Eng. J. 2024, 15, 102606. [Google Scholar] [CrossRef]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Tanabe, R.; Fukunaga, A.S. Improving the Search Performance of SHADE Using Linear Population Size Reduction. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1658–1665. [Google Scholar]
- Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm Evol. Comput. 2018, 43, 88–108. [Google Scholar] [CrossRef]
- Tran, H.-N.; Phan, G.T.; Tran, V.-P.; Do, Q.B.; Phan, H.; Nguyen, H.T.; Chu, T.-N.; Hoang, V.-K. Influence of problem characteristics on the optimal balance between population size and the number of generations in in-core fuel management using SHADE method. Nucl. Eng. Des. 2025, 443, 114258. [Google Scholar] [CrossRef]
- Yousri, D.; Sukanya, V.; Bijukumar, B.; Farag, H.E.Z.; El-Saadany, E. A novel one-time unified configuration strategy with L-SHADE optimizer for enhanced power extraction in thermoelectric generator array. Appl. Therm. Eng. 2024, 257, 124376. [Google Scholar] [CrossRef]
- Chen, G.; Shen, Y.; Zhang, Y.; Zhang, W.; Wang, D.; He, B. 2D multi-area coverage path planning using L-SHADE in simulated ocean survey. Appl. Soft Comput. 2021, 112, 107754. [Google Scholar] [CrossRef]
- Ji, X.; Lu, X.; Li, H.; Ma, P.; Xu, S. Blade optimization design of Savonius hydraulic turbine based on radial basis function surrogate model and L-SHADE algorithm. Ocean Eng. 2023, 286, 14. [Google Scholar] [CrossRef]
- Piotrowski, A.P. L-SHADE optimization algorithms with population-wide inertia. Inf. Sci. 2018, 468, 117–141. [Google Scholar] [CrossRef]
- Sohrabian, B.; Soltani-Mohammadi, S.; Bakhtavar, E.; Taherinia, A. Joint simulation through orthogonal factors generated by the L-SHADE optimization method. Spat. Stat. 2021, 43, 100521. [Google Scholar] [CrossRef]
- Sallam, K.M.; Alrashdi, I.; Mohamed, R.; Abdel-Basset, M. An enhanced LSHADE-based algorithm for global and constrained optimization in applied mechanics and power flow problems. Swarm Evol. Comput. 2025, 97, 102032. [Google Scholar] [CrossRef]
- Guo, S.-M.; Yang, C.-C.; Tsai, J.S.-H.; Hsu, P.-H. A Self-Optimization Approach for L-SHADE Incorporated with Eigenvector-Based Crossover and Successful-Parent-Selecting Framework on CEC 2015 Benchmark Set. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1003–1010. [Google Scholar]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2958–2965. [Google Scholar]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean Neighborhood for Solving CEC2017 Benchmark Problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 372–379. [Google Scholar]
- Akhmedova, S.; Stanovov, V.; Semenkin, E. LSHADE Algorithm with a Rank-based Selective Pressure Strategy for the Circular Antenna Array Design Problem. In Proceedings of the International Conference on Informatics in Control, Automation and Robotic ICINCO (1), Porto, Brazil, 29–31 July 2018; pp. 159–165. [Google Scholar]
- Duankhan, P.; Sunat, K.; Chiewchanwattana, S.; Nasa-ngium, P. The Differentiated Creative Search (DCS): Leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems. Expert Syst. Appl. 2024, 252, 123734. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS95 Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference On Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360); Anchorage, AK, USA, 4–9 May 1998, pp. 69–73.
- Dawson, P.H. (Ed.) Quadrupole Mass Spectrometry and Its Applications; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Syed, S.U.; Hogan, T.J.; Antony Joseph, M.J.; Maher, S.; Taylor, S. Quadrupole mass filter: Design and performance for operation in stability zone 3. J. Am. Soc. Mass Spectrom. 2013, 24, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiang, Y.; Liu, M.; Dai, X.; Fang, X.; Chen, D.; Qiu, C.; Huang, Z. Research on Automatic Adjustment of Mass Resolution in Quadrupole Mass Spectrometry. J. Chin. Mass Spectrom. Soc. 2020, 41, 118–124. [Google Scholar]
- Zhang, T.; Chen, Y.; Chen, P.; Cao, Y.-X.; Tian, D.; Hua, L.; Li, H.-Y. Adaptive Online Optimization of Multiple-Reflection Time-of-Flight Mass Spectrometer Performance Based on Genetic Algorithm. Chin. J. Anal. Chem. 2023, 51, 1105–1111. [Google Scholar] [CrossRef]
- Jia, M.; Li, L.; Xiong, B.; Feng, L.; Cheng, W.; Dong, W.F. Multi-Parameter Auto-Tuning Algorithm for Mass Spectrometer Based on Improved Particle Swarm Optimization. Bioengineering 2023, 10, 1079. [Google Scholar] [CrossRef]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical report No. 201311; Nanyang Technological University: Singapore, 2016; pp. 1–34. [Google Scholar]










| Functions Type | Functions No. of CEC 2017 | Functions | Fi* = Fi(x*) |
|---|---|---|---|
| Simple Multimodal Functions | F5 | Shifted and Rotated Rastrigin’s Function | 500 |
| F7 | Shifted and Rotated Lunacek Bi_Rastrigin Function | 700 | |
| Hybrid Functions | F16 | Hybrid Function 6 (N = 4) | 1600 |
| F20 | Hybrid Function 10 (N = 6) | 2000 | |
| Composition Functions | F26 | Composition Function 6 (N = 5) | 2600 |
| F29 | Composition Function 10 (N = 3) | 2900 |
| Functions | - | PSO | DE/Best/1/Bin | DE/Rand-to-Best/1/Bin | DE-i |
|---|---|---|---|---|---|
| F5 | Mean | 562.41 | 564.73 | 583.78 | 553.74 |
| Std | 10.25 | 27.62 | 19.14 | 19.55 | |
| F7 | Mean | 819.14 | 844.19 | 834.90 | 803.13 |
| Std | 18.72 | 77.43 | 34.28 | 33.68 | |
| F16 | Mean | 2092.59 | 2126.74 | 2140.46 | 2040.02 |
| Std | 162.08 | 180.25 | 186.85 | 195.05 | |
| F20 | Mean | 2224.55 | 2225.89 | 2276.96 | 2164.04 |
| Std | 96.75 | 101.71 | 94.12 | 61.11 | |
| F26 | Mean | 3307.35 | 3694.84 | 3785.91 | 3443.51 |
| Std | 432.45 | 595.26 | 572.65 | 323.52 | |
| F29 | Mean | 3388.66 | 3377.26 | 3440.26 | 3380.73 |
| Std | 101.20 | 109.16 | 113.26 | 88.80 |
| Method | Test 1 (cps) | Test 2 (cps) | Test 3 (cps) | Mean (cps) |
|---|---|---|---|---|
| Univariate search | 2.15 × 107 | 2.21 × 107 | 2.16 × 107 | 2.17 × 107 |
| PSO | 2.48 × 107 | 2.63 × 107 | 2.64 × 107 | 2.58 × 107 |
| DE/best/1/bin | 2.71 × 107 | 2.66 × 107 | 2.70 × 107 | 2.69 × 107 |
| DE/rand-to-best/1/bin | 2.68 × 107 | 2.64 × 107 | 2.70 × 107 | 2.67 × 107 |
| DE-i | 2.71 × 107 | 2.71 × 107 | 2.73 × 107 | 2.72 × 107 |
| No. | Intensity at m/z 172.88 (cps) | Intensity at m/z 622.57 (cps) | Intensity at m/z 922.36 (cps) |
|---|---|---|---|
| 1 | 2.44 × 107 | 2.49 × 107 | 8.29 × 106 |
| 2 | 2.37 × 107 | 2.31 × 107 | 7.60 × 106 |
| 3 | 2.56 × 107 | 2.57 × 107 | 8.44 × 106 |
| 4 | 2.42 × 107 | 2.54 × 107 | 8.41 × 106 |
| 5 | 2.30 × 107 | 2.53 × 107 | 7.62 × 106 |
| 6 | 2.73 × 107 | 2.41 × 107 | 6.71 × 106 |
| 7 | 2.65 × 107 | 2.64 × 107 | 8.23 × 106 |
| 8 | 2.47 × 107 | 2.63 × 107 | 8.42 × 106 |
| 9 | 2.53 × 107 | 2.20 × 107 | 6.73 × 106 |
| 10 | 2.54 × 107 | 2.28 × 107 | 6.79 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xiong, B.; Feng, L.; Li, L.; Cheng, W.; Tang, Y. Automatic Tuning Method for Quadrupole Mass Spectrometer Based on Improved Differential Evolution Algorithm. Bioengineering 2025, 12, 1154. https://doi.org/10.3390/bioengineering12111154
Zhang Y, Xiong B, Feng L, Li L, Cheng W, Tang Y. Automatic Tuning Method for Quadrupole Mass Spectrometer Based on Improved Differential Evolution Algorithm. Bioengineering. 2025; 12(11):1154. https://doi.org/10.3390/bioengineering12111154
Chicago/Turabian StyleZhang, Yuanqing, Baolin Xiong, Le Feng, Liang Li, Wenbo Cheng, and Yuguo Tang. 2025. "Automatic Tuning Method for Quadrupole Mass Spectrometer Based on Improved Differential Evolution Algorithm" Bioengineering 12, no. 11: 1154. https://doi.org/10.3390/bioengineering12111154
APA StyleZhang, Y., Xiong, B., Feng, L., Li, L., Cheng, W., & Tang, Y. (2025). Automatic Tuning Method for Quadrupole Mass Spectrometer Based on Improved Differential Evolution Algorithm. Bioengineering, 12(11), 1154. https://doi.org/10.3390/bioengineering12111154

