Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection Procedure
2.3. Data Recording
2.4. Data Processing
2.5. Time Series Signal Segmentation
2.6. Feature Extraction
2.7. Statistical Analysis
2.8. Machine Learning Algorithms and Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekstrand, E.; Lexell, J.; Brogårdh, C. Isometric and Isokinetic Muscle Strength in the Upper Extremity Can Be Reliably Measured in Persons with Chronic Stroke. J. Rehabil. Med. 2015, 47, 706–713. [Google Scholar] [CrossRef]
- Alt Murphy, M.; Willén, C.; Sunnerhagen, K.S. Movement Kinematics During a Drinking Task Are Associated with the Activity Capacity Level After Stroke. Neurorehabilit. Neural Repair 2012, 26, 1106–1115. [Google Scholar] [CrossRef]
- Ramlee, M.H.; Gan, K.B. Function and Biomechanics of Upper Limb in Post-Stroke Patients—A Systematic Review. J. Mech. Med. Biol. 2017, 17, 1750099. [Google Scholar] [CrossRef]
- Collins, K.C.; Kennedy, N.C.; Clark, A.; Pomeroy, V.M. Kinematic Components of the Reach-to-Target Movement after Stroke for Focused Rehabilitation Interventions: Systematic Review and Meta-Analysis. Front. Neurol. 2018, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.D.; Corben, L.A.; Pathirana, P.N.; Horne, M.K.; Delatycki, M.B.; Szmulewicz, D.J. The Assessment of Upper Limb Functionality in Friedreich Ataxia via Self-Feeding Activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-J.; He, C.; Xia, N.; Gu, M.-H.; Li, Y.-A.; Xiong, C.-H.; Xu, J.; Huang, X.-L. Association Between Finger-to-Nose Kinematics and Upper Extremity Motor Function in Subacute Stroke: A Principal Component Analysis. Front. Bioeng. Biotechnol. 2021, 9, 660015. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Lee, W.H.; Seo, H.G.; Kim, Y.J.; Bang, M.S.; Kim, S. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors 2019, 19, 1782. [Google Scholar] [CrossRef]
- Saes, M.; Mohamed Refai, M.I.; van Beijnum, B.J.F.; Bussmann, J.B.J.; Jansma, E.P.; Veltink, P.H.; Buurke, J.H.; van Wegen, E.E.H.; Meskers, C.G.M.; Krakauer, J.W.; et al. Quantifying Quality of Reaching Movements Longitudinally Post-Stroke: A Systematic Review. Neurorehabilit. Neural Repair 2022, 36, 183–207. [Google Scholar] [CrossRef]
- Ota, H.; Mukaino, M.; Inoue, Y.; Matsuura, S.; Yagi, S.; Kanada, Y.; Saitoh, E.; Otaka, Y. Movement Component Analysis of Reaching Strategies in Individuals with Stroke: Preliminary Study. JMIR Rehabil. Assist. Technol. 2023, 10, e50571. [Google Scholar] [CrossRef]
- Huang, X.; Liao, O.; Jiang, S.; Li, J.; Ma, X. Kinematic Analysis in Post-Stroke Patients with Moderate to Severe Upper Limb Paresis and Non-Disabled Controls. Clin. Biomech. 2024, 113, 106206. [Google Scholar] [CrossRef]
- Cai, L.; Liu, D.; Ma, Y. Placement Recommendations for Single Kinect-Based Motion Capture System in Unilateral Dynamic Motion Analysis. Healthcare 2021, 9, 1076. [Google Scholar] [CrossRef]
- Kwakkel, G.; Van Wegen, E.; Burridge, J.; Winstein, C.; Van Dokkum, L.; Alt Murphy, M.; Levin, M.; Krakauer, J. Standardized Measurement of Quality of Upper Limb Movement after Stroke: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2019, 14, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Patten, C.; Dozono, J.; Schmidt, S.G.; Jue, M.E.; Lum, P.S. Combined Functional Task Practice and Dynamic High Intensity Resistance Training Promotes Recovery of Upper-Extremity Motor Function in Post-Stroke Hemiparesis: A Case Study. J. Neurol. Phys. Ther. 2006, 30, 99. [Google Scholar] [CrossRef] [PubMed]
- Lodha, N.; Naik, S.K.; Coombes, S.A.; Cauraugh, J.H. Force Control and Degree of Motor Impairments in Chronic Stroke. Clin. Neurophysiol. 2010, 121, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Cauraugh, J.H. Force Control in Chronic Stroke. Neurosci. Biobehav. Rev. 2015, 52, 38–48. [Google Scholar] [CrossRef]
- Arene, N.; Hidler, J. Understanding Motor Impairment in the Paretic Lower Limb After a Stroke: A Review of the Literature. Top. Stroke Rehabil. 2009, 16, 346–356. [Google Scholar] [CrossRef]
- Tabary, J.C.; Tabary, C.; Tardieu, C.; Tardieu, G.; Goldspink, G. Physiological and Structural Changes in the Cat’s Soleus Muscle Due to Immobilization at Different Lengths by Plaster Casts. J. Physiol. 1972, 224, 231–244. [Google Scholar] [CrossRef]
- Williams, P.E.; Goldspink, G. Connective Tissue Changes in Immobilised Muscle. J. Anat. 1984, 138, 343–350. [Google Scholar]
- Akeson, W.H.; Woo, S.L.; Amiel, D.; Matthews, J.V. Biomechanical and Biochemical Changes in the Periarticular Connective Tissue During Contracture Development in the Immobilized Rabbit Knee. Connect. Tissue Res. 1974, 2, 315–323. [Google Scholar] [CrossRef]
- Mahmoud, W.; Haugland, M.; Ramos-Murguialday, A.; Hultborn, H.; Ziemann, U. Measuring Resistance to Externally Induced Movement of the Wrist Joint in Chronic Stroke Patients Using an Objective Hand-Held Dynamometer. Clin. Neurophysiol. Pract. 2023, 8, 97–110. [Google Scholar] [CrossRef]
- Ancillao, A.; Rossi, S.; Cappa, P. Analysis of Knee Strength Measurements Performed by a Hand-Held Multicomponent Dynamometer and Optoelectronic System. IEEE Trans. Instrum. Meas. 2017, 66, 85–92. [Google Scholar] [CrossRef]
- Sartori, M.; Llyod, D.G.; Farina, D. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Trans. Biomed. Eng. 2016, 63, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, M.; Duffell, L.D. Dynamic Analysis of the Upper Limb during Activities of Daily Living: Comparison of Methodologies. Proc. Inst. Mech. Eng. H 2013, 227, 1275–1283. [Google Scholar] [CrossRef]
- Shah, M.F.; Jamwal, P.K.; Goecke, R.; Niyetkaliyev, A.S.; Hussain, S. A Parallel Mechanism-Based Virtual Biomechanical Shoulder Robot Model: Mechanism Design Optimization and Motion Planning. Mech. Based Des. Struct. Mach. 2025, 53, 2744–2764. [Google Scholar] [CrossRef]
- Cop, C.P.; Cavallo, G.; van ’t Veld, R.C.; FJM Koopman, B.; Lataire, J.; Schouten, A.C.; Sartori, M. Unifying System Identification and Biomechanical Formulations for the Estimation of Muscle, Tendon and Joint Stiffness during Human Movement. Prog. Biomed. Eng. 2021, 3, 033002. [Google Scholar] [CrossRef]
- Radmilović, M.; Urukalo, D.; Janković, M.M.; Dujović, S.D.; Tomić, T.J.D.; Trumić, M.; Jovanović, K. Elbow Joint Stiffness Functional Scales Based on Hill’s Muscle Model and Genetic Optimization. Sensors 2023, 23, 1709. [Google Scholar] [CrossRef] [PubMed]
- Tahmid, S.; Font-Llagunes, J.M.; Yang, J. Upper Extremity Joint Torque Estimation Through an Electromyography-Driven Model. J. Comput. Inf. Sci. Eng. 2023, 23, 030901. [Google Scholar] [CrossRef]
- Seth, A.; Dong, M.; Matias, R.; Delp, S. Muscle Contributions to Upper-Extremity Movement and Work from a Musculoskeletal Model of the Human Shoulder. Front. Neurorobot. 2019, 13, 90. [Google Scholar] [CrossRef]
- Giszter, S.F. Motor Primitives—New Data and Future Questions. Curr. Opin. Neurobiol. 2015, 33, 156–165. [Google Scholar] [CrossRef]
- Schwarz, A.; Bhagubai, M.M.C.; Nies, S.H.G.; Held, J.P.O.; Veltink, P.H.; Buurke, J.H.; Luft, A.R. Characterization of Stroke-Related Upper Limb Motor Impairments across Various Upper Limb Activities by Use of Kinematic Core Set Measures. J. Neuroeng. Rehabil. 2022, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Repnik, E.; Puh, U.; Goljar, N.; Munih, M.; Mihelj, M. Using Inertial Measurement Units and Electromyography to Quantify Movement during Action Research Arm Test Execution. Sensors 2018, 18, 2767. [Google Scholar] [CrossRef]
- Kim, K.; Song, W.-K.; Lee, J.; Lee, H.-Y.; Park, D.S.; Ko, B.-W.; Kim, J. Kinematic Analysis of Upper Extremity Movement during Drinking in Hemiplegic Subjects. Clin. Biomech. 2014, 29, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Grönlund, C.; Karlsson, J.S.; Roeleveld, K. Differential Activation of Regions within the Biceps Brachii Muscle during Fatigue. Acta Physiol. 2008, 192, 559–567. [Google Scholar] [CrossRef]
- Holtermann, A.; Roeleveld, K.; Mork, P.J.; Grönlund, C.; Karlsson, J.S.; Andersen, L.L.; Olsen, H.B.; Zebis, M.K.; Sjøgaard, G.; Søgaard, K. Selective Activation of Neuromuscular Compartments within the Human Trapezius Muscle. J. Electromyogr. Kinesiol. 2009, 19, 896–902. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Besier, T.F. An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments in Vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Reggiani, M.; Van Den Bogert, A.J.; Lloyd, D.G. Estimation of Musculotendon Kinematics in Large Musculoskeletal Models Using Multidimensional B-Splines. J. Biomech. 2012, 45, 595–601. [Google Scholar] [CrossRef]
- Nazarahari, M.; Rouhani, H. A Full-State Robust Extended Kalman Filter for Orientation Tracking During Long-Duration Dynamic Tasks Using Magnetic and Inertial Measurement Units. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2021, 29, 1280–1289. [Google Scholar] [CrossRef]
- Mihelj, M.; Podobnik, J.; Munih, M. Sensory Fusion of Magnetoinertial Data Based on Kinematic Model with Jacobian Weighted-Left-Pseudoinverse and Kalman-Adaptive Gains. IEEE Trans. Instrum. Meas. 2019, 68, 2610–2620. [Google Scholar] [CrossRef]
- Pizzolato, C.; Lloyd, D.G.; Sartori, M.; Ceseracciu, E.; Besier, T.F.; Fregly, B.J.; Reggiani, M. CEINMS: A Toolbox to Investigate the Influence of Different Neural Control Solutions on the Prediction of Muscle Excitation and Joint Moments during Dynamic Motor Tasks. J. Biomech. 2015, 48, 3929–3936. [Google Scholar] [CrossRef]
- Wright, Z.A.; Majeed, Y.A.; Patton, J.L.; Huang, F.C. Key Components of Mechanical Work Predict Outcomes in Robotic Stroke Therapy. J. NeuroEng. Rehabil. 2020, 17, 53. [Google Scholar] [CrossRef]
- Mohamed Refai, M.I.; Saes, M.; Scheltinga, B.L.; van Kordelaar, J.; Bussmann, J.B.J.; Veltink, P.H.; Buurke, J.H.; Meskers, C.G.M.; van Wegen, E.E.H.; Kwakkel, G.; et al. Smoothness Metrics for Reaching Performance after Stroke. Part 1: Which One to Choose? J. Neuroeng. Rehabil. 2021, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Kanzler, C.M.; Lambercy, O.; Luft, A.R.; Veerbeek, J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements after Stroke. Stroke 2019, 50, 718–727. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the Analysis of Movement Smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- Bandini, V.; Carpinella, I.; Marzegan, A.; Jonsdottir, J.; Frigo, C.A.; Avanzino, L.; Pelosin, E.; Ferrarin, M.; Lencioni, T. Surface-Electromyography-Based Co-Contraction Index for Monitoring Upper Limb Improvements in Post-Stroke Rehabilitation: A Pilot Randomized Controlled Trial Secondary Analysis. Sensors 2023, 23, 7320. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, L.; Li, G.; Jiang, D.; Xu, S.; Chen, D. Grasping Force Prediction Based on sEMG Signals. Alex. Eng. J. 2020, 59, 1135–1147. [Google Scholar] [CrossRef]
- Masood, H.; Farooq, H. Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition. Electronics 2022, 11, 2386. [Google Scholar] [CrossRef]
- Bagasta, A.R.; Rustam, Z.; Pandelaki, J.; Nugroho, W.A. Comparison of Cubic SVM with Gaussian SVM: Classification of Infarction for Detecting Ischemic Stroke. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 52016. [Google Scholar] [CrossRef]
- LaValley, M.P. Logistic Regression. Circulation 2008, 117, 2395–2399. [Google Scholar] [CrossRef]
- Zhang, S.; Sim, T. Discriminant Subspace Analysis: A Fukunaga-Koontz Approach. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1732–1745. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear Discriminant Analysis: A Detailed Tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Wong, J.D.; Cluff, T.; Kuo, A.D. The Energetic Basis for Smooth Human Arm Movements. eLife 2021, 10, e68013. [Google Scholar] [CrossRef]
- Chang, S.-H.; Francisco, G.e.; Zhou, P.; Rymer, W.Z.; Li, S. Spasticity, Weakness, Force Variability, and Sustained Spontaneous Motor Unit Discharges of Resting Spastic–Paretic Biceps Brachii Muscles in Chronic Stroke. Muscle Nerve 2013, 48, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Patten, C.; Lexell, J.; Brown, H.E. Weakness and Strength Training in Persons with Poststroke Hemiplegia: Rationale, Method, and Efficacy. J. Rehabil. Res. Dev. 2004, 41, 293–312. [Google Scholar] [CrossRef]
- Schuermans, J.; Danneels, L.; Van Tiggelen, D.; Palmans, T.; Witvrouw, E. Proximal Neuromuscular Control Protects against Hamstring Injuries in Male Soccer Players: A Prospective Study with Electromyography Time-Series Analysis during Maximal Sprinting. Am. J. Sports Med. 2017, 45, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, C.J.C.; van Heuvelen, M.J.G. Sports Activities Are Reflected in the Local Stability and Regularity of Body Sway: Older Ice-Skaters Have Better Postural Control than Inactive Elderly. Gait Posture 2012, 35, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Kudo, N.; Choi, K.; Kagawa, T.; Uno, Y. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion. Neural Comput. 2016, 28, 950–969. [Google Scholar] [CrossRef]
- Beer, R.F.; Dewald, J.P.A.; Rymer, W.Z. Deficits in the Coordination of Multijoint Arm Movements in Patients with Hemiparesis: Evidence for Disturbed Control of Limb Dynamics. Exp. Brain Res. 2000, 131, 305–319. [Google Scholar] [CrossRef]
- d’Avella, A.; Lacquaniti, F. Control of Reaching Movements by Muscle Synergy Combinations. Front. Comput. Neurosci. 2013, 7, 42. [Google Scholar] [CrossRef]
- Beer, R.F.; Dewald, J.P.A.; Dawson, M.L.; Rymer, W.Z. Target-Dependent Differences between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res. 2004, 156, 458–470. [Google Scholar] [CrossRef]
- Silva, C.C.; Silva, A.; Sousa, A.; Bourlinova, C.; Silva, A.; Salazar, A.; Borges, C.; Crasto, C.; Correia, M.V.; Vilas-Boas, J.P.; et al. Co-Activation of Upper Limb Muscles during Reaching in Post-Stroke Subjects: An Analysis of the Contralesional and Ipsilesional Limbs. J. Electromyogr. Kinesiol. 2014, 24, 731–738. [Google Scholar] [CrossRef]



| Variable | Patient (20) | Healthy (20) |
|---|---|---|
| Age, median (IQR) | 55 (12) | 52 (13) |
| Gender (Male/Female) | 12/8 | 10/10 |
| Side of assessed (Right/Left) | 18/2 | 17/3 |
| Type of brain injury (Isch/Hemo) | 13/7 | / |
| Time since brain injury, months, median (IQR) | 29.37 (22.48) | / |
| FMUE, median (IQR) | 23.42 (17.19) | / |
| Metrics | Phase I | Phase II | Phase III | Phase IV | Whole-Task | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Health | Stroke | p-Value | Health | Stroke | p-Value | Health | Stroke | p-Value | Health | Stroke | p-Value | Health | Stroke | p-Value | |
| Work_ElFE | 0.21 ± 0.38 | 0.08 ± 0.24 | 0.195 | 1.25 ± 0.48 | 0.90 ± 0.32 | 0.012 * | −1.16 ± 0.37 | −0.86 ± 0.32 | 0.009 * | −0.03 ± 0.31 | 0.09 ± 0.29 | 0.22 | 0.25(0.16) | 0.17(0.12) | 0.191 |
| Work_ShFE | 0.38 ± 0.56 | 0.62 ± 0.58 | 0.204 | 0.13 ± 0.71 | 0.23 ± 0.98 | 0.709 | −0.28 ± 0.71 | −0.06 ± 0.50 | 0.28 | −0.05(0.74) | −0.50(0.72) | 0.062 | 0.18 ± 0.34 | 0.29 ± 0.40 | 0.354 |
| Work_ShAA | 0.09(0.12) | 0.09(0.21) | 0.643 | 0.09 ± 0.14 | 0.06 ± 0.15 | 0.43 | −0.08 ± 0.09 | −0.04 ± 0.11 | 0.266 | −0.14 ± 0.14 | −0.20 ± 0.16 | 0.233 | 0.01(0.10) | −0.05(0.13) | 0.191 |
| Work_ShERIR | −0.18 ± 0.10 | −0.18 ± 0.10 | 0.863 | 0.02(0.14) | −0.00(0.20) | 0.966 | −0.01(0.12) | −0.02(0.10) | 0.811 | 0.20(0.18) | 0.17(0.12) | 0.684 | 0.01(0.06) | 0.00(0.12) | 0.546 |
| Work_BR | 0.35(0.46) | 0.04(0.31) | 0.1 | 1.49 ± 1.53 | 1.61 ± 2.78 | 0.863 | −1.39 ± 1.41 | −0.53 ± 1.72 | 0.095 | −0.05 ± 0.39 | 0.09 ± 0.32 | 0.243 | 0.13 ± 0.03 | 0.13 ± 0.03 | 0.807 |
| Work_BB | 0.71(2.38) | 1.23(2.48) | 0.361 | 1.18(1.00) | 0.69(0.58) | 0.027 * | −1.64 ± 0.84 | −1.12 ± 0.53 | 0.028 * | −1.78 ± 1.95 | −2.16 ± 1.71 | 0.524 | 0.13 ± 0.26 | 0.16 ± 0.26 | 0.69 |
| Work_TRL | 0.30(1.67) | 0.46(2.11) | 0.255 | 0.17 ± 1.32 | 0.06 ± 1.13 | 0.795 | −0.15 ± 1.57 | 0.06 ± 0.95 | 0.626 | 0.03(1.35) | −0.58(1.18) | 0.066 | −0.41(0.64) | −0.51(1.08) | 0.173 |
| Work_AD | 0.08 ± 0.07 | 0.02 ± 0.08 | 0.031 * | 0.03(0.13) | 0.00(0.09) | 0.747 | −0.01 ± 0.09 | −0.00 ± 0.09 | 0.696 | −0.11 ± 0.08 | −0.08 ± 0.09 | 0.268 | 0.02(1.18) | 0.34(1.59) | 0.201 |
| Work_MD | −1.52 ± 1.13 | −0.81 ± 0.81 | 0.032 * | −0.09 ± 1.42 | 0.22 ± 1.09 | 0.455 | 0.06 ± 1.32 | −0.36 ± 1.17 | 0.299 | 1.65 ± 1.10 | 1.15 ± 1.16 | 0.175 | 0.20(0.80) | 0.33(0.80) | 0.361 |
| Work_PD | −0.09(0.25) | −0.19(0.60) | 0.173 | −0.00(0.32) | 0.04(0.75) | 1 | 0.03 ± 0.45 | −0.01 ± 0.48 | 0.805 | 0.06(0.20) | 0.24(0.36) | 0.045 * | −0.04 ± 0.21 | −0.10 ± 0.30 | 0.419 |
| Work_PM | 0.09 ± 0.44 | 0.29 ± 0.47 | 0.178 | −0.31(0.66) | −0.34(0.77) | 0.877 | 0.14 ± 0.61 | 0.22 ± 0.50 | 0.676 | 0.19(0.44) | −0.19(0.38) | 0.036 * | −0.04(0.12) | −0.04(0.09) | 0.684 |
| Sparc_ElFE | −2.46(0.42) | −2.78(0.37) | 0.006 * | −2.01 ± 0.25 | −2.34 ± 0.44 | 0.007 * | −2.25 ± 0.12 | −2.41 ± 0.29 | 0.029 * | −2.75 ± 0.28 | −3.08 ± 0.43 | 0.007 * | −4.02 ± 0.51 | −4.08 ± 0.41 | 0.699 |
| Sparc_ShFE | −2.56(0.24) | −2.72(0.26) | 0.013 * | −2.56 ± 0.26 | −2.65 ± 0.30 | 0.325 | −2.60 ± 0.16 | −2.66 ± 0.23 | 0.293 | −2.65 ± 0.27 | −2.97 ± 0.37 | 0.003 * | −3.56 ± 0.39 | −3.68 ± 0.36 | 0.324 |
| Sparc_ShAA | −2.37(0.38) | −2.46(0.36) | 0.211 | −2.51 ± 0.18 | −2.73 ± 0.32 | 0.012 * | −2.61(0.17) | −2.68(0.39) | 0.361 | −2.46(0.55) | −2.82(0.51) | 0.001 * | −3.27 ± 0.31 | −3.45 ± 0.33 | 0.091 |
| Sparc_ShERIR | −2.29(0.33) | −2.36(0.31) | 0.191 | −2.41 ± 0.22 | −2.82 ± 0.19 | 0.009 * | −2.42(0.23) | −2.51(0.19) | 0.432 | −2.34(0.42) | −2.92(0.21) | 0.001 * | −3.17 ± 0.21 | −3.37 ± 0.28 | 0.082 |
| Sparc_BR | −2.49(0.13) | −2.64(0.28) | 0.003 * | −2.55 ± 0.27 | −2.66 ± 0.30 | 0.253 | −2.54 ± 0.30 | −2.65 ± 0.31 | 0.239 | −2.66 ± 0.25 | −2.95 ± 0.35 | 0.005 * | −3.82 ± 0.40 | −3.95 ± 0.35 | 0.319 |
| Sparc_BB | −2.36(0.17) | −2.54(0.31) | 0.007 * | −2.57 ± 0.17 | −2.85 ± 0.26 | 0.000 * | −2.77 ± 0.11 | −2.87 ± 0.24 | 0.08 | −2.60 ± 0.27 | −3.01 ± 0.37 | 0.000 * | −4.17 ± 0.49 | −4.59 ± 1.10 | 0.127 |
| Sparc_TRL | −2.32 ± 0.16 | −2.48 ± 0.47 | 0.166 | −2.47 ± 0.15 | −2.77 ± 0.28 | 0.000 * | −2.62 ± 0.14 | −2.76 ± 0.24 | 0.029 * | −2.59 ± 0.27 | −2.94 ± 0.35 | 0.001 * | −3.52(0.29) | −3.92(0.54) | 0.009 * |
| Sparc_AD | −2.43(0.30) | −2.54(0.40) | 0.319 | −1.72 ± 0.13 | −2.02 ± 0.29 | 0.000 * | −2.11 ± 0.14 | −2.26 ± 0.26 | 0.036 * | −2.58 ± 0.34 | −2.85 ± 0.41 | 0.032 * | −3.46(0.54) | −3.62(1.15) | 0.201 |
| Sparc_MD | −2.43(0.17) | −2.58(0.37) | 0.022 * | −2.64 ± 0.16 | −2.81 ± 0.26 | 0.015 * | −2.71 ± 0.14 | −2.88 ± 0.27 | 0.017 * | −2.67 ± 0.25 | −3.03 ± 0.39 | 0.001 * | −3.62 ± 0.21 | −3.78 ± 0.33 | 0.076 |
| Sparc_PD | −2.50(0.15) | −2.66(0.25) | 0.006 * | −2.70 ± 0.19 | −2.93 ± 0.25 | 0.003 * | −2.92 ± 0.12 | −2.97 ± 0.24 | 0.446 | −2.71 ± 0.25 | −3.05 ± 0.33 | 0.001 * | −3.60 ± 0.14 | −3.85 ± 0.21 | 0.000 * |
| Sparc_PM | −2.32(0.24) | −2.58(0.36) | 0.013 * | −2.50 ± 0.18 | −2.73 ± 0.34 | 0.011 * | −2.66(0.25) | −2.68(0.26) | 0.164 | −2.54 ± 0.25 | −2.92 ± 0.39 | 0.001 * | −3.68(1.00) | −3.95(1.04) | 0.966 |
| TCCI_AD_PD | 0.24 ± 0.03 | 0.28 ± 0.05 | 0.015 * | 0.26(0.03) | 0.30(0.05) | 0.001 * | 0.28 ± 0.03 | 0.32 ± 0.03 | 0.000 * | 0.25(0.05) | 0.31(0.06) | 0.003 * | 0.26 ± 0.02 | 0.30 ± 0.04 | 0.001 * |
| TCCI_TRL_BB | 0.26 ± 0.04 | 0.28 ± 0.05 | 0.086 | 0.27 ± 0.02 | 0.31 ± 0.04 | 0.001 * | 0.28 ± 0.03 | 0.32 ± 0.03 | 0.001 * | 0.26(0.06) | 0.31(0.05) | 0.013 * | 0.27 ± 0.03 | 0.30 ± 0.04 | 0.008 * |
| TCCI_MD_PM | 0.30 ± 0.02 | 0.33 ± 0.03 | 0.000 * | 0.30 ± 0.02 | 0.33 ± 0.03 | 0.000 * | 0.30 ± 0.02 | 0.33 ± 0.03 | 0.000 * | 0.30 ± 0.02 | 0.33 ± 0.03 | 0.000 * | 0.13 ± 0.03 | 0.13 ± 0.03 | 0.807 |
| TCCI_TRl_BR | 0.14 ± 0.05 | 0.12 ± 0.04 | 0.15 | 0.17 ± 0.06 | 0.19 ± 0.04 | 0.364 | 0.12 ± 0.03 | 0.12 ± 0.03 | 0.837 | 0.09(0.03) | 0.10(0.04) | 0.527 | 0.30 ± 0.02 | 0.33 ± 0.03 | 0.162 |
| Biomechanical Metric | Phase I | Phase II | Phase III | Phase IV | Whole Task |
|---|---|---|---|---|---|
| Elbow F/E Work | 0.28 | 0.79 * | 0.51 | 0.19 | 0.31 |
| Shoulder F/E Work | 0.22 | 0.48 | 0.45 | 0.15 | 0.26 |
| Biceps Brachii Work | 0.85 * | 0.31 | 0.29 | 0.33 | 0.38 |
| Elbow F/E Sparc | 0.82 * | 0.52 | 0.78 * | 0.87 * | 0.35 |
| Shoulder Abd/Add Sparc | 0.32 | 0.83 * | 0.37 | 0.81 * | 0.41 |
| AD/PD TCCI | 0.84 * | 0.61 | 0.39 | 0.31 | 0.31 |
| MD/PM TCCI | −0.88 * | −0.54 | −0.82 * | −0.52 | −0.55 |
| TRL/BB TCCI | −0.29 | −0.52 | −0.48 | −0.43 | −0.46 |
| Model | Accuracy | Precision | Recall | F1-Score | AUC |
|---|---|---|---|---|---|
| SD | 0.821(0.795) | 0.875(0.867) | 0.737(0.684) | 0.800(0.765) | 0.837(0.863) |
| GSVM | 0.795(0.615) | 0.824(0.600) | 0.737(0.632) | 0.778(0.615) | 0.815(0.761) |
| LR | 0.795(0.744) | 0.867(0.765) | 0.684(0.684) | 0.765(0.722) | 0.840(0.850) |
| QSVM | 0.846(0.769) | 0.933(0.813) | 0.737(0.684) | 0.824(0.743) | 0.853(0.763) |
| LD | 0.821(0.718) | 0.929(0.682) | 0.684(0.789) | 0.788(0.732) | 0.858(0.775) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Peng, W.; Chen, J.; Sun, S.; Wang, J. Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke. Bioengineering 2025, 12, 1144. https://doi.org/10.3390/bioengineering12111144
Li L, Peng W, Chen J, Sun S, Wang J. Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke. Bioengineering. 2025; 12(11):1144. https://doi.org/10.3390/bioengineering12111144
Chicago/Turabian StyleLi, Lei, Wei Peng, Jingcheng Chen, Shaoming Sun, and Junhong Wang. 2025. "Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke" Bioengineering 12, no. 11: 1144. https://doi.org/10.3390/bioengineering12111144
APA StyleLi, L., Peng, W., Chen, J., Sun, S., & Wang, J. (2025). Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke. Bioengineering, 12(11), 1144. https://doi.org/10.3390/bioengineering12111144
