Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Grayscale Ultrasound Phantom
3.2. Elastography Phantoms
3.3. Flow Phantom
3.4. Human Tissue’s Physical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carovac, A.; Smajlovic, F.; Junuzovic, D. Application of Ultrasound in Medicine. Acta Inform. Medica 2011, 19, 168–171. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Averkiou, M.; Nielsen, M.B.; Barr, R.G.; Burns, P.N.; Calliada, F.; Cantisani, V.; Choi, B.; Chammas, M.C.; Clevert, D.-A.; et al. How to perform Contrast-Enhanced Ultrasound (CEUS). Ultrasound Int. Open 2018, 04, E2–E15. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, G.; Vishnupriyan, R.; Selvadeepak, S. Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review. Mater. Today Proc. 2020, 22, 2696–2703. [Google Scholar] [CrossRef]
- McGarry, C.K.; Grattan, L.J.; Ivory, A.M.; Leek, F.; Liney, G.P.; Liu, Y.; Miloro, P.; Rai, R.; Robinson, A.; Shih, A.J.; et al. Tissue mimicking materials for imaging and therapy phantoms: A review. Phys. Med. Biol. 2020, 65, 23TR01. [Google Scholar] [CrossRef] [PubMed]
- Culjat, M.O.; Goldenberg, D.; Tewari, P.; Singh, R.S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 2010, 36, 861–873. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.-Y.; Zhang, X.; Liu, Y.-L. Tissue-mimicking materials for elastography phantoms: A review. Extreme Mech. Lett. 2017, 17, 62–70. [Google Scholar] [CrossRef]
- Kamphuis, M.E.; Greuter, M.J.W.; Slart, R.H.J.A.; Slump, C.H. Quantitative imaging: Systematic review of perfusion/flow phantoms. Eur. Radiol. Exp. 2020, 4, 15. [Google Scholar] [CrossRef]
- Dakok, K.K.; Matjafri, M.Z.; Suardi, N.; Oglat, A.A.; Nabasu, S.E. A review of carotid artery phantoms for doppler ultrasound applications. J. Med. Ultrasound 2021, 29, 157–166. [Google Scholar] [CrossRef]
- Armstrong, S.A.; Jafary, R.; Forsythe, J.S.; Gregory, S.D. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. Ultrasound Med. Biol. 2023, 49, 18–30. [Google Scholar] [CrossRef]
- Vieira, S.L.; Pavan, T.Z.; Junior, J.E.; Carneiro, A.A. Paraffin-Gel Tissue-Mimicking Material for Ultrasound-Guided Needle Biopsy Phantom. Ultrasound Med. Biol. 2013, 39, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Grillo, F.W.; Cabrelli, L.C.; Sampaio, D.R.T.; Carneiro, A.A.O.; Pavan, T.Z. Glycerol in oil-based phantom with improved performance for photoacoustic imaging. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Cabrelli, L.C.; Grillo, F.W.; Sampaio, D.R.; Carneiro, A.A.; Pavan, T.Z. Acoustic and Elastic Properties of Glycerol in Oil-Based Gel Phantoms. Ultrasound Med. Biol. 2017, 43, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- De Matheo, L.L.; Geremia, J.; Calas, M.J.G.; Costa-Júnior, J.F.S.; da Silva, F.F.F.; von Krüger, M.A.; Pereira, W.C.d.A. PVCP-based anthropomorphic breast phantoms containing structures similar to lactiferous ducts for ultrasound imaging: A comparison with human breasts. Ultrasonics 2018, 90, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Elvira, L.; Durán, C.; Higuti, R.T.; Tiago, M.M.; Ibáñez, A.; Parrilla, M.; Valverde, E.; Jiménez, J.; Bassat, Q. Development and Characterization of Medical Phantoms for Ultrasound Imaging Based on Customizable and Mouldable Polyvinyl Alcohol Cryogel–Based Materials and 3-D Printing: Application to High-Frequency Cranial Ultrasonography in Infants. Ultrasound Med. Biol. 2019, 45, 2226–2241. [Google Scholar] [CrossRef] [PubMed]
- Drakos, T.; Giannakou, M.; Menikou, G.; Constantinides, G.; Damianou, C. Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications. Ultrasonics 2021, 113, 106357. [Google Scholar] [CrossRef] [PubMed]
- Gautam, U.C.; Pydi, Y.S.; Selladurai, S.; Das, C.J.; Thittai, A.K.; Roy, S.; Datla, N.V. A Poly-vinyl Alcohol (PVA)-based phantom and training tool for use in simulated Transrectal Ultrasound (TRUS) guided prostate needle biopsy procedures. Med. Eng. Phys. 2021, 96, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Lin, C.-L. A Multilayered, Lesion-Embedded Ultrasound Breast Phantom with Realistic Visual and Haptic Feedback for Needle Biopsy. Ultrasound Med. Biol. 2022, 48, 1468–1483. [Google Scholar] [CrossRef] [PubMed]
- Fohely, F.; Oglat, A.; Sabarna, K.; Shweiki, Z.; Hamoudeh, B.; Shalaan, R. Fabrication of low-cost realistic three-dimensional static kidney phantom for ultrasound-guided biopsy applications. J. Med. Ultrasound 2022, 30, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, L.; Brüningk, S.C.; Rivens, I.; Civale, J.; ter Haar, G. Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. Ultrasound Med. Biol. 2022, 48, 1095–1109. [Google Scholar] [CrossRef]
- Hariyanto, A.P.; Budiarti, N.T.; Suprijanto; Ng, K.H.; Haryanto, F. Endarko Evaluation of physical properties and image of polyvinyl chloride as breast tissue equivalence for dual-modality (mammography and ultrasound). Phys. Eng. Sci. Med. 2023, 46, 1175–1185. [Google Scholar] [CrossRef]
- Cao, R.; Huang, Z.; Varghese, T.; Nabi, G. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study. Med. Phys. 2013, 40, 022903. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.M.; Zhou, S.; Robert, J.-L.; Shamdasani, V.; Xie, H. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography. Ultrasound Med. Biol. 2014, 40, 168–176. [Google Scholar] [CrossRef]
- Funamoto, K.; Yamashita, O.; Hayase, T. Poly(vinyl alcohol) gel ultrasound phantom with durability and visibility of internal flow. J. Med. Ultrason. 2015, 42, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Herbst, E.B.; Pye, S.D.; Moran, C.M.; Hossack, J.A. Pipe phantoms with applications in molecular imaging and system characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Maneas, E.; Xia, W.; Nikitichev, D.I.; Daher, B.; Manimaran, M.; Wong, R.Y.J.; Chang, C.-W.; Rahmani, B.; Capelli, C.; Schievano, S.; et al. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Phys. Med. Biol. 2018, 63, 015033. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.M.; Santos, T.Q.; Oliveira, D.P.; Alvarenga, A.V.; Costa-Felix, R.P.B. Standard operating procedure to prepare agar phantoms. J. Phys. Conf. Ser. 2016, 733, 012044. [Google Scholar] [CrossRef]
- Sun, C.; Pye, S.D.; Browne, J.E.; Janeczko, A.; Ellis, B.; Butler, M.B.; Sboros, V.; Thomson, A.J.; Brewin, M.P.; Earnshaw, C.H.; et al. The Speed of Sound and Attenuation of an IEC Agar-Based Tissue-Mimicking Material for High Frequency Ultrasound Applications. Ultrasound Med. Biol. 2012, 38, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Menikou, G.; Damianou, C. Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures. J. Ther. Ultrasound 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Kenwright, D.A.; Wang, S.; Hossack, J.A.; Hoskins, P.R. Fabrication of two flow phantoms for doppler ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 53–65. [Google Scholar] [CrossRef]
- Hill, C.R.; Bamber, J.C.; ter Haar, G.R. Physical Principles of Medical Ultrasonics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Duck, F.A. Acoustic Properties of Tissue at Ultrasonic Frequencies. In Physical Properties of Tissues; Elsevier: Amsterdam, The Netherlands, 1990; pp. 73–135. [Google Scholar] [CrossRef]
- Hoskins, P.R. Principles of ultrasound elastography. Ultrasound 2012, 20, 8–15. [Google Scholar] [CrossRef]
- Dang, J.; Lasaygues, P.; Zhang, D.; Tavernier, S.; Felix, N.; Frisch, B.; Mensah, S.; Wan, M. Development of Breast Anthropomorphic Phantoms for Combined PET-Ultrasound Elastography Imaging. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 3088–3092. [Google Scholar]
- Rzymski, P.; Skórzewska, A.; Skibińska-Zielińska, M.; Opala, T. Factors influencing breast elasticity measured by the ultrasound Shear Wave elastography—Preliminary results. Arch. Med. Sci. 2011, 1, 127–133. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, M.-K.; He, Y.; Li, X.-R.; Wang, Z.-L. Shear wave elasticity of breast lesions: Would it be correlated with the extracellular matrix components? Gland. Surg. 2019, 8, 399–406. [Google Scholar] [CrossRef]
- Shah, N.S.; Kruse, S.A.; Lager, D.J.; Farell-Baril, G.; Lieske, J.C.; King, B.F.; Ehman, R.L. Evaluation of Renal Parenchymal Disease in a Rat Model With Magnetic Resonance Elastography. Magn. Reson. Med. 2004, 52, 56–64. [Google Scholar] [CrossRef]
- Arda, K.; Ciledag, N.; Aktas, E.; Arıbas, B.K.; Köse, K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am. J. Roentgenol. 2011, 197, 532–536. [Google Scholar] [CrossRef]
- Panfilova, A.; Chen, X.; Widdershoven, C.; Freund, J.E.; Heijink, D.S.; Zondervan, P.; van Sloun, R.J.; Sapozhnikov, O.A.; Wijkstra, H.; Mischi, M. B/A Measurement of Clear Cell Renal Cell Carcinoma versus Healthy Kidney Tissue. Ultrasound Med. Biol. 2022, 48, 1348–1355. [Google Scholar] [CrossRef]
- Aydin, S.; Yildiz, S.; Turkmen, I.; Sharifov, R.; Uysal, O.; Gucin, Z.; Armagan, A.; Kocakoc, E. Value of Shear Wave Elastography for differentiating benign and malignant renal lesions. Med. Ultrason. 2018, 1, 21–26. [Google Scholar] [CrossRef]
- Zhang, D.; Gong, X.-F. Experimental investigation of the acoustic nonlinearity parameter tomography for excised pathological biological tissues. Ultrasound Med. Biol. 1999, 25, 593–599. [Google Scholar] [CrossRef]
- Rouvière, O.; Yin, M.; Dresner, M.A.; Rossman, P.J.; Burgart, L.J.; Fidler, J.L.; Ehman, R.L. MR elastography of the liver: Preliminary results. Radiology 2006, 240, 440–448. [Google Scholar] [CrossRef]
- Bamber, J.C.; Hill, C.R. Acoustic properties of normal and cancerous human liver—I. Dependence on pathological condition. Ultrasound Med. Biol. 1981, 7, 121–133. [Google Scholar] [CrossRef]
- Guibal, A.; Boularan, C.; Bruce, M.; Vallin, M.; Pilleul, F.; Walter, T.; Scoazec, J.Y.; Boublay, N.; Dumortier, J.; Lefort, T. Evaluation of shearwave elastography for the characterisation of focal liver lesions on ultrasound. Eur. Radiol. 2012, 23, 1138–1149. [Google Scholar] [CrossRef]
- Parker, K.J.; Huang, S.R.; Leme, R.M.; Lee, F.; Rubens, D.; Roach, D. Elastic and Ultrasonic Properties of the Prostate. In Proceedings of the 1993 Proceedings IEEE Ultrasonics Symposium, Baltimore, MD, USA, 31 October–3 November 1993. [Google Scholar]
- Tanoue, H.; Hagiwara, Y.; Kobayashi, K.; Saijo, Y. Ultrasonic Tissue Characterization of Prostate Biopsy Tissues by Ultrasound Speed Microscope. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 8499–8502. [Google Scholar]
- Boehm, K.; Salomon, G.; Beyer, B.; Schiffmann, J.; Simonis, K.; Graefen, M.; Budaeus, L. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: Implications for targeted biopsies and active surveillance protocols. J. Urol. 2015, 193, 794–800. [Google Scholar] [CrossRef]
- Tyloch, D.J.; Tyloch, J.F.; Adamowicz, J.; Neska-Długosz, I.; Grzanka, D.; Van Breda, S.; Drewa, T. Comparison of Strain and Shear Wave Elastography in Prostate Cancer Detection. Ultrasound Med. Biol. 2023, 49, 889–900. [Google Scholar] [CrossRef]
- Dai, W.-B.; Xu, J.; Yu, B.; Chen, L.; Chen, Y.; Zhan, J. Correlation of Stiffness of Prostate Cancer Measured by Shear Wave Elastography with Grade Group: A Preliminary Study. Ultrasound Med. Biol. 2021, 47, 288–295. [Google Scholar] [CrossRef]
- Wei, C.; Li, C.; Szewczyk-Bieda, M.; Upreti, D.; Lang, S.; Huang, Z.; Nabi, G. Performance Characteristics of Transrectal Shear Wave Elastography Imaging in the Evaluation of Clinically Localized Prostate Cancer: A Prospective Study. J. Urol. 2018, 200, 549–557. [Google Scholar] [CrossRef]
- Lockwood, G.; Ryan, L.; Hunt, J.; Foster, F. Measurement of the Ultrasonic Properties of Vascular Tissues and Blood from 35–65 MHz. Ultrasound Med. Biol. 1991, 17, 653–666. [Google Scholar] [CrossRef]
- Bernal, M.; Nenadic, I.; Urban, M.W.; Greenleaf, J.F. Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes. J. Acoust. Soc. Am. 2011, 129, 1344–1354. [Google Scholar] [CrossRef]
- Treeby, B.E.; Zhang, E.Z.; Thomas, A.S.; Cox, B.T. Measurement of the Ultrasound Attenuation and Dispersion in Whole Human Blood and its Components From 0–70 MHz. Ultrasound Med. Biol. 2011, 37, 289–300. [Google Scholar] [CrossRef]
- Burlew, M.M.; Madsen, E.L.; Zagzebski, J.A.; Banjavic, R.A.; Sum, S.W. A New Ultrasound Tissue-Equivalent Materiall. Radiology 1980, 134, 517–520. [Google Scholar] [CrossRef]
- Cannon, L.M.; Fagan, A.J.; Browne, J.E. Novel Tissue Mimicking Materials for High Frequency Breast Ultrasound Phantoms. Ultrasound Med. Biol. 2011, 37, 122–135. [Google Scholar] [CrossRef]
- Teirlinck, C.J.; Bezemer, R.A.; Kollmann, C.; Lubbers, J.; Hoskins, P.R.; Fish, P.; Fredfeldt, K.-E.; Schaarschmidt, U.G. Development of an Example Flow Test Object and Comparison of Five of These Test Objects, Constructed in Various Laboratories. Ultrasonics 1998, 36, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Andrews, M.E.; Jayashankar, V.; Mishra, A.K.; Suresh, S. Measurement of viscoelastic properties of polyacrylamide-based tissue-mimicking phantoms for ultrasound elastography applications. IEEE Trans. Instrum. Meas. 2010, 59, 1224–1232. [Google Scholar] [CrossRef]
- Mwiiri, F.K.; Daniels, R. Influence of PVA molecular weight and concentration on electrospinnability of birch bark extract-loaded nanofibrous scaffolds intended for enhanced wound healing. Molecules 2020, 25, 4799. [Google Scholar] [CrossRef]
- Galvis-García, E.S.; Sobrino-Cossío, S.; Reding-Bernal, A.; Contreras-Marín, Y.; Solórzano-Acevedo, K.; González-Zavala, P.; Quispe-Siccha, R.M. Experimental model standardizing polyvinyl alcohol hydrogel to simulate endoscopic ultrasound and endoscopic ultrasound-elastography. World J. Gastroenterol. 2020, 26, 5169–5180. [Google Scholar] [CrossRef]
- Ceh, D.; Peters, T.M.; Chen, E.C.S. Acoustic characterization of polyvinyl chloride and self-healing silicone as phantom materials. In Proceedings of the Medical Imaging 2015: Physics of Medical Imaging, Orlando, FL, USA, 18 March 2015; Volume 9412. [Google Scholar]
- Cournane, S.; Cannon, L.; Browne, J.E.; Fagan, A.J. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties. Phys. Med. Biol. 2010, 55, 5965–5983. [Google Scholar] [CrossRef]
- Sharma, A.; Marapureddy, S.G.; Paul, A.; Bisht, S.R.; Kakkar, M.; Thareja, P.; Mercado-Shekhar, K.P. Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography. Ultrasound Med. Biol. 2023, 49, 497–511. [Google Scholar] [CrossRef]
- Stauffer, S.R.; Peppast, N.A. Poly(Vinyl Alcohol) Hydrogels Prepared by Freezing-Thawing Cyclic Processing. Polymer 1992, 33, 3932–3936. [Google Scholar] [CrossRef]
- Martiartu, N.K.; Nambiar, S.; Kirchner, I.N.; Paverd, C.; Cester, D.; Frauenfelder, T.; Ruby, L.; Rominger, M.B. Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study. Ultrasound Med. Biol. 2021, 47, 3529–3542. [Google Scholar] [CrossRef]
- Mia, S.; Ohno, N. Effect of Sound Velocity of Lubricating Oil on Its Molecular Structure *. 2007. Available online: https://www.researchgate.net/publication/281137667 (accessed on 11 January 2024).
- Nisar, H.; Moore, J.; Piazza, R.; Maneas, E.; Chen, E.C.S.; Peters, T.M. A simple, realistic walled phantom for intravascular and intracardiac applications. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1513–1523. [Google Scholar] [CrossRef]
- Al-Mutairi, F.F.; Chung, E.M.; Moran, C.M.; Ramnarine, K.V. A Novel Elastography Phantom Prototype for Assessment of Ultrasound Elastography Imaging Performance. Ultrasound Med. Biol. 2021, 47, 2749–2758. [Google Scholar] [CrossRef]
- Jafary, R.; Armstrong, S.; Byrne, T.; Stephens, A.; Pellegrino, V.; Gregory, S.D. Fabrication and Characterization of Tissue-Mimicking Phantoms for Ultrasound-Guided Cannulation Training. Asaio J. 2022, 68, 940–948. [Google Scholar] [CrossRef]
Criteria | Inclusion | Exclusion |
---|---|---|
Setting | All countries | None |
Modality | Ultrasound Doppler ultrasound Contrast-enhanced ultrasound Strain and shear wave elastography ultrasound | Studies that did not examine these devices |
Outcomes | Acoustic properties Mechanical properties Fabrication processing Ultrasound image | Studies that did not detail the acoustic properties (speed of sound and attenuation coefficient) or TMM phantom fabrication processing |
Study Type | TMM phantom fabrication | In vitro studies Review articles Systematic reviews 3D-printed phantom studies Commercial phantoms Studies that did not show new fabrication processing methods or depended on the fabrication methods of other studies |
Publication Type | Journal articles | Conference abstracts, study protocols, reports, dissertations, books, or non-professional journals |
Publication Year | Publication date in 2013 and after | Publication date before 2013 |
Language | English | All other languages |
Modality | Author (Year) | TMMs | Phantom Type | SOS (m/s) | AC (dB/Mhz/cm) | Elasticity (kPa) |
---|---|---|---|---|---|---|
Grayscale | Vieira et al., 2013 [11] | Paraffin gel wax Glass microspheres | Breast phantom | 1425.4–1480.3 | 0.32–2.04 | |
Grillo et al., 2017 [12] | SEBS + glycerol + TiO2 + mineral oil | Photoacoustic phantom | 1478.8 | 0.45 | ||
Cabrelli et al., 2017 [13] | SEBS + g + mineral oil | 1423–1502 | 0.1–0.59 | 25.7–71.4 | ||
Matheo et al., 2018 [14] | PVC plastisol + Al2O3 | Breast phantom | 1400 | 0.50 | ||
Elvira et al., 2019 [15] | PVA + propanediol + Al2O3 | Brain phantom | 1541–1622 | 0.15 | ||
Drakos et al., 2021 [16] | Agar and wood powder | US and MRI | 1487–1533 | 0.48 | ||
Gautam et al., 2021 [17] | PVA | Prostate biopsy phantom | 1478–1537 | 0.38–0.91 | 2–130 | |
Ng et al., 2022 [18] | IEC agar | Breast phantom | 1479–1553 | 0.6–2 | 120–401 | |
Fohely et al., 2022 [19] | Gelatine + agar starch | Kidney phantom | 1553–1956 | 0.31–0.47 | ||
Braunstein et al., 2022 [20] | PVA + cellulose | Kidney phantom | 1556–1566 | 0.08–0.09 | ||
Hariyanto et al., 2023 [21] | PVC + DOP + graphite + silicon oil | Mammography and US phantom | 1436–2021 | 0.51–0.063 | ||
Elastography | Cao et al., 2013 [22] | PAA + agar + silicon + Al2O3 | Prostate phantom | Agar: 1519–1534 PAA: 1468–1471 Silicon: 1187 | Agar: 0.5–0.78 PAA: 0.26–0.70 Silicon: 4.09 | Agar: 157.8–443 PAA: 104.3 Silicon 297.3 |
Nguyen et al., 2014 [23] | Gelatine + castor oil + propanol + graphite | Visco-elastography phantom | 1740–1558 | 0.4–1.07 | 2–11 | |
Flow Phantom | Funamoto et al., 2015 [24] | PVA DMSO + glass microbeads | Ultrasound phantom | 1567 | 40 (at 40 MHz) | |
Wang et al., 2017 [25] | Gelatine-based + PDMS | Flow pipe phantom | Gelatine-based: 1554 (PDMS): 981 | Gelatine-based: 0.54 (PDMS): 4 | ||
Maneas et al., 2018 [26] | Oil + gel wax | Heart and placenta phantom | 1443–1448 | 0.08–0.348 |
Human Tissue | Speed of Sound (m/s) | Attenuation Coefficient (dB/mm at MHz) | Young’s Modulus (kPa) |
---|---|---|---|
Breast (fat) [32,34,35] | 1420–1479 | 0.05 | 9.24 |
Breast (glands) [32,34,35] | 1553 | 11.28 | |
Breast (carcinoma) [32,34,36] | 1437–1550 | 0.3 | 44 |
Normal kidney [32,37,38] | 1560 | 1.1 | 5–23.6 |
Renal mass [39,40] | 1516–1783 | 0.9–10.2 | 8.9–31.80 |
Normal liver [32,41,42] | 1577–1592 | 0.5 | 5.1–7.2 |
Fatty liver [32,43,44] | 1522–1553 | 1.20–2.4 | 19.8 |
Tumour in the liver [43,44] | 1555 | - | 86.4 |
Prostate [45,46,47,48] | 1561–1614 | 0.78 | 36–42 |
Prostate cancer [46,49,50] | 1584 | 1.42 | 75–131 |
Blood vessels [32,51,52] | 1560–1660 | 0.13–0.16 | 72–134 |
Blood [32,53] | 1590 | 0.21 |
Tissue-Mimicking Materials | Velocity (m/s) | Attenuation Coefficient (dB/cm at 1 MHz) | Young’s Modulus (kPa) |
---|---|---|---|
Water-based materials | |||
Agar phantom [18,22] | 1519–1550 | 0.175–0.78 | 157–443 |
Agar/gelatine [19,25] | 1553 | 0.47–0.54 | |
Agar/gelatine/starch [19] | 1882 | 0.36 | |
Agar/wood [16] | 1487–1530 | 0.56 | |
Gelatine/starch [19] | 1956 | 0.31 | |
PVA phantom [15,17,20,24] | 1478–1622 | 0.08–078 | 2–146 |
PAA phantom [22] | 1468–1471 | 0.26–0.70 | 104 |
Silicon [22] | 1187 | 4.09 | 297 |
PDMS [25] | 981 | 4 | |
PVC [21] | 1536–2021 | 0.5–0.8 | |
PVC plastisol [14] | 1400 | 0.43–0.55 | |
Oil-based materials | |||
SEBS [12,13] | 1478 | 0.35 | |
Paraffin gel [11] | 1480 | 0.3–2 | |
Gel wax/paraffin wax [26] | 1443–1447 | 0.08–0.348 | |
Oil-in-hydrogel materials | |||
IEC agar/olive oil and surfactant [18] | 1479 | 0.085 | 120 |
Gelatine/castor oil [23] | 1554–1558 | 0.4–1.07 | 10–26 |
PVC/silicon oil [21] | 1536–1600 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawli, A.; Aldehani, W.; Nabi, G.; Huang, Z. Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review. Bioengineering 2024, 11, 620. https://doi.org/10.3390/bioengineering11060620
Jawli A, Aldehani W, Nabi G, Huang Z. Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review. Bioengineering. 2024; 11(6):620. https://doi.org/10.3390/bioengineering11060620
Chicago/Turabian StyleJawli, Adel, Wadhhah Aldehani, Ghulam Nabi, and Zhihong Huang. 2024. "Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review" Bioengineering 11, no. 6: 620. https://doi.org/10.3390/bioengineering11060620
APA StyleJawli, A., Aldehani, W., Nabi, G., & Huang, Z. (2024). Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review. Bioengineering, 11(6), 620. https://doi.org/10.3390/bioengineering11060620