Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Teeth Preparation
2.3. Apical Region Evaluation
2.4. Cement–Dentin Interface Investigation
2.5. Cement–Sealer Interface Investigation
2.6. Statistical Analysis
3. Results
3.1. Marginal Apical Adaptation
3.2. Cement–Dentin Interfaces
3.3. Cement–Dentin Interfaces (Tags)
3.4. Cement–Sealer Interfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaker, A.; Rekab, M.S.; Alharissy, M.; Kharouf, N. Revascularization of Non-Vital, Immature, Permanent Teeth with Two Bioceramic Cements: A Randomized Controlled Trial. Ceramics 2024, 7, 86–100. [Google Scholar] [CrossRef]
- Aly, M.M.; Taha, S.E.E.D.; El Sayed, M.A.; Youssef, R.; Omar, H.M. Clinical and radiographic evaluation of Biodentine and Mineral Trioxide Aggregate in revascularization of non-vital immature permanent anterior teeth (randomized clinical study). Int. J. Paediatr. Dent. 2019, 29, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lu, J.; Jiang, Q.; Haapasalo, M.; Qian, J.; Tay, F.R.; Shen, Y. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact. Mater. 2021, 12, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Albert, J.; Mortman, R. One step pulp revascularization treatment of an immature permanent tooth with chronic apical abscess: A case report. Int. Endod. J. 2009, 42, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; He, J.; Glickman, G.N.; Woodmansey, K.F. Comparative Analysis of Calcium Silicate-based Root Filling Materials Using an Open Apex Model. J. Endod. 2016, 42, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Orosco, F.A.; Bramante, C.M.; Garcia, R.B.; Bernardineli, N.; de Moraes, I.G. Sealing ability, marginal adaptation and their correlation using three root-end filling materials as apical plugs. J. Appl. Oral Sci. 2010, 18, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Mente, J.; Leo, M.; Panagidis, D.; Ohle, M.; Schneider, S.; Lorenzo Bermejo, J.; Pfefferle, T. Treatment outcome of mineral trioxide aggregate in open apex teeth. J. Endod. 2013, 39, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Holden, D.T.; Schwartz, S.A.; Kirkpatrick, T.C.; Schindler, W.G. Clinical outcomes of artificial root-end barriers with mineral trioxide aggregate in teeth with immature apices. J. Endod. 2008, 34, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Witherspoon, D.E.; Small, J.C.; Regan, J.D.; Nunn, M. Retrospective analysis of open apex teeth obturated with mineral trioxide aggregate. J. Endod. 2008, 34, 1171–1176. [Google Scholar] [CrossRef]
- Toia, C.C.; Teixeira, F.B.; Cucco, C.; Valera, M.C.; Cavalcanti, B.N. Filling ability of three bioceramic root-end filling materials: A micro-computed tomography analysis. Aust. Endod. J. 2020, 46, 424–431. [Google Scholar] [CrossRef]
- Abraham, S.; Chandwani, E.D.; Nagmode, P.; Lokhande, N.; Badgujar, M.B.; Diggikar, K. A Spectrophotometric comparative evaluation of the sealing ability of various perforation repair materials with a novel eggshell modified GIC. J. Conserv. Dent. Endod. 2023, 26, 697–701. [Google Scholar] [PubMed]
- Türkoğlu Kayaci, Ş.; Solmazgül Yazici, Z.; Arslan, H. Spectrophotometric Analysis of Color Stability Induced by Various Calcium Silicate Cements in Full Pulpotomy of Permanent Molars: Theracal PT, Biodentine, and ProRoot MTA. J. Endod. 2024, 50, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Govind, S.; Sahoo, S.K.; Pattanaik, S.; Mallikarjuna, R.M.; Nalawade, T.; Saraf, S.; Khaldi, N.A.; Jahdhami, S.A.; Shivagange, V.; et al. Analysis of Pulp Tissue Viability and Cytotoxicity of Pulp Capping Agents. J. Clin. Med. 2023, 12, 539. [Google Scholar] [CrossRef]
- Boukpessi, T.; Cottreel, L.; Galler, K.M. External Inflammatory Root Resorption in Traumatized Immature Incisors: MTA Plug or Revitalization? A Case Series. Children 2023, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Kharouf, N.; Zghal, J.; Addiego, F.; Gabelout, M.; Jmal, H.; Haikel, Y.; Bahlouli, N.; Ball, V. Tannic acid speeds up the setting of mineral trioxide aggregate cements and improves its surface and bulk properties. J. Colloid. Interface Sci. 2021, 589, 318–326. [Google Scholar] [CrossRef]
- Sheela, S.; Nassar, M.; AlGhalban, F.M.; Gorduysus, M.O. In Vitro Cytotoxicity and Mineralization Potential of an Endodontic Bioceramic Material. Eur. J. Dent. 2023, 17, 548–555. [Google Scholar] [CrossRef]
- Torabinejad, M.; White, D.J. Tooth filling material and method of use. US Patent 1993, 5, 415+547. [Google Scholar]
- Kharouf, N.; Haïkel, Y.; Mancino, D. Unusual Maxillary First Molars with C-Shaped Morphology on the Same Patient: Variation in Root Canal Anatomy. Case Rep. Dent. 2019, 2019, 1857289. [Google Scholar] [CrossRef]
- Ashi, T.; Mancino, D.; Hardan, L.; Bourgi, R.; Zghal, J.; Macaluso, V.; Al-Ashkar, S.; Alkhouri, S.; Haikel, Y.; Kharouf, N. Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materials. Bioengineering 2022, 9, 624. [Google Scholar] [CrossRef]
- Nayak, G.; Hasan, M.F. Biodentine-a novel dentinal substitute for single visit apexification. Restor. Dent. Endod. 2014, 39, 120–125. [Google Scholar] [CrossRef]
- Kharouf, N.; Arntz, Y.; Eid, A.; Zghal, J.; Sauro, S.; Haikel, Y.; Mancino, D. Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealer. J. Clin. Med. 2020, 9, 3096. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, Y.J.; Vu, H.T.; Park, J.H.; Shin, S.J.; Dashnyam, K.; Knowles, J.C.; Lee, H.H.; Jun, S.K.; Han, M.R.; et al. Physicochemical, Biological, and Antibacterial Properties of Four Bioactive Calcium Silicate-Based Cements. Pharmaceutics 2023, 15, 1701. [Google Scholar] [CrossRef]
- Song, M.; Lee, S.M.; Bang, J.Y.; Kim, R.H.; Kwak, S.W.; Kim, H.C. Chemomechanical Properties and Biocompatibility of Various Premixed Putty-type Bioactive Ceramic Cements. J. Endod. 2023, 49, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.S.; Sulimany, A.M.; Alayad, A.S.; Alqahtani, A.S.; Bawazir, O.A. Evaluation of the Shear Bond Strength of Four Bioceramic Materials with Different Restorative Materials and Timings. Materials 2022, 15, 4668. [Google Scholar] [CrossRef] [PubMed]
- Donnermeyer, D.; Ibing, M.; Bürklein, S.; Weber, I.; Reitze, M.P.; Schäfer, E. Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers. Materials 2021, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Lee, S.J.; Yoon, T.C.; Roh, B.D.; Kim, E. Survival Rate of Teeth with a C-shaped Canal after Intentional Replantation: A Study of 41 Cases for up to 11 Years. J. Endod. 2016, 42, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Bai, W.; Wang, Y.; Liang, Y.H. Effect of different dentin moisture on the push-out strength of bioceramic root canal sealer. J. Dent. Sci. 2023, 18, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Yoo, Y.J. Effect of apexification on occlusal resistance of immature teeth. BMC Oral Health. 2020, 20, 325. [Google Scholar] [CrossRef] [PubMed]
- Alhaddad Alhamoui, F.; Steffen, H.; Splieth, C.H. The sealing ability of ProRoot MTA when placed as an apical barrier using three different techniques: An in-vitro apexification model. Quintessence Int. 2014, 45, 821–827. [Google Scholar] [PubMed]
- Teoh, Y.Y.; Athanassiadis, B.; Walsh, L.J. Sealing Ability of Alkaline Endodontic Cements versus Resin Cements. Materials 2017, 10, 1228. [Google Scholar] [CrossRef]
- Saber, S.M.; Gomaa, S.M.; Elashiry, M.M.; El-Banna, A.; Schäfer, E. Comparative biological properties of resin-free and resin-based calcium silicate-based endodontic repair materials on human periodontal ligament stem cells. Clin. Oral Investig. 2023, 27, 6757–6768. [Google Scholar] [CrossRef]
- Lo Giudice, G.; Cutroneo, G.; Centofanti, A.; Artemisia, A.; Bramanti, E.; Militi, A.; Rizzo, G.; Favaloro, A.; Irrera, A.; Lo Giudice, R.; et al. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study. Biomed Res. Int. 2015, 2015, 164065. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Kazerani, H.; Morgano, S.M.; Gutmann, J.L. Evaluation of Mechanical Activation and Chemical Synthesis for Particle Size Modification of White Mineral Trioxide Aggregate. Eur. Endod. J. 2020, 5, 128–133. [Google Scholar] [PubMed]
- Komabayashi, T.; Spångberg, L.S. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: A study with a flow particle image analyzer. J. Endod. 2008, 34, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Tanomaru-Filho, M.; Guerreiro-Tanomaru, J.M. Properties of Hydrated Mineral Trioxide Aggregate. In Mineral Trioxide Aggregate in Dentistry: From Preparation to Application, 1st ed.; Camilleri, J., Ed.; Springer: New York, NY, USA, 2014; pp. 37–59. [Google Scholar]
- Siqueira, J.F., Jr.; Favieri, A.; Gahyva, S.M.; Moraes, S.R.; Lima, K.C.; Lopes, H.P. Antimicrobial activity and flow rate of newer and established root canal sealers. J. Endod. 2000, 26, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Atmeh, A.R.; Watson, T.F. BiodentineTM physico-chemical properties: From interactions with dental tissues to ageing. In Biodentine™: Properties and Clinical Applications; About, I., Ed.; Springer: New York, NY, USA, 2022; pp. 11–30. [Google Scholar]
- Duarte, M.A.H.; Marciano, M.A.; Vivan, R.R.; Tanomaru Filho, M.; Tanomaru, J.M.G.; Camilleri, J. Tricalcium silicate-based cements: Properties and modifications. Braz. Oral Res. 2018, 32 (Suppl. S1), e70. [Google Scholar] [CrossRef]
- Yoo, J.S.; Chang, S.W.; Oh, S.R.; Perinpanayagam, H.; Lim, S.M.; Yoo, Y.J.; Oh, Y.R.; Woo, S.B.; Han, S.H.; Zhu, Q.; et al. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: A scanning electron microscopy study. Int. J. Oral Sci. 2014, 6, 227–232. [Google Scholar] [CrossRef]
- Milanovic, I.; Milovanovic, P.; Antonijevic, D.; Dzeletovic, B.; Djuric, M.; Miletic, V. Immediate and Long-Term Porosity of Calcium Silicate–Based Sealers. J. Endod. 2020, 46, 515–523. [Google Scholar] [CrossRef]
- Huang, Y.; Orhan, K.; Celikten, B. Evaluation of the sealing ability of different root canal sealers: A combined SEM 388 and micro-CT study. J. Appl. Oral Sci. 2018, 26, e20160584. [Google Scholar] [CrossRef]
- Kim, J.A.; Hwang, Y.C.; Rosa, V.; Yu, M.K.; Lee, K.W.; Min, K.S. Root Canal Filling Quality of a Premixed Calcium Silicate Endodontic Sealer Applied Using Gutta-percha Cone-mediated Ultrasonic Activation. J. Endod. 2018, 44, 133–138. [Google Scholar] [CrossRef]
- Keleş, A.; Torabinejad, M.; Keskin, C.; Sah, D.; Uzun, İ.; Alçin, H. Micro-CT evaluation of voids using two root filling techniques in the placement of MTA in mesial root canals of Vertucci type II configuration. Clin. Oral Investig. 2018, 22, 1907–1913. [Google Scholar] [CrossRef]
- Tolibah, Y.A.; Droubi, L.; Alkurdi, S.; Abbara, M.T.; Bshara, N.; Lazkani, T.; Kouchaji, C.; Ahmad, I.A.; Baghdadi, Z.D. Evaluation of a Novel Tool for Apical Plug Formation during Apexification of Immature Teeth. Int. J. Environ. Res. Public Health. 2022, 19, 5304. [Google Scholar] [CrossRef]
- Ali, S.M.; Mukthineni, S.; Sankar, A.S.; Enuganti, S.; Kundeti, S.S.; Yalamanchili, S. Comparative Evaluation of Four Different Obturating Techniques in Primary Teeth Using Cone-beam Computed Tomography: An In Vivo Study. Int. J. Clin. Pediatr. Dent. 2023, 16, 218–222. [Google Scholar] [PubMed]
- Poggio, C.; Dagna, A.; Ceci, M.; Meravini, M.V.; Colombo, M.; Pietrocola, G. Solubility and pH of bioceramic root canal sealers: A comparative study. J. Clin. Exp. Dent. 2017, 9, e1189–e1194. [Google Scholar] [CrossRef] [PubMed]
- Küçükkaya Eren, S.; Aksel, H.; Serper, A. Effect of placement technique on the push-out bond strength of calcium-silicate based cements. Dent. Mater. J. 2016, 35, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Guinesi, A.S.; Faria, G.; Tanomaru-Filho, M.; Bonetti-Filho, I. Influence of sealer placement technique on the quality of root canal filling by lateral compaction or single cone. Braz. Dent. J. 2014, 25, 117–122. [Google Scholar] [CrossRef]
Cement | Manufacturer | Lot | Mixing | Composition |
---|---|---|---|---|
BiodentineTM “BD” | Septodont, Saint-Maur-des-Fossés, France | B25370 | Powder: 1 capsule Liquid: 5 drops | Powder: tricalcium silicate; dicalcium silicate; calcium carbonate; zirconium dioxide; iron oxide Liquid: calcium chloride; water-soluble polymer |
MTA Biorep “BR” | Itena Clinical, Paris, France | 103308 | Powder: 1 capsule Liquid: 4 drops | Powder: tricalcium silicate; dicalcium silicate; tricalcium aluminate; calcium oxide; calcium tungstate Liquid: water and plasticizer |
Well-Root PT “WR” | Vericome, Gangwon-do, Republic of Korea | WT103100 | Premixed | Calcium aluminosilicate compound; zirconium oxide; thickening agent |
TotalFill® BC Sealer™ “TF” | FKG, La Chaux-de-Fonds, Switzerland | 21004SP | Premixed | Zirconium oxide, dicalcium silicate, tricalcium silicate, calcium phosphate monobasic, calcium hydroxide, filler, thickening agents |
Groups | G1 | G2 | G3 | G4 | G5 | G6 | p-Value |
---|---|---|---|---|---|---|---|
Scores | 1.4 ± 0.6 | 1.1 ± 0.3 | 1.3 ± 0.4 | 1.0 ± 0.0 | 1.0 ± 0.0 | 1.2 ± 0.4 | 0.415 |
Groups | BR-TF | WR-TF | BD-TF | Statistical Analysis |
---|---|---|---|---|
Digital microscope (µm2) | 91,922 ± 35,706 | 10,386 ± 8347 | 54,796 ± 22,862 | p > 0.05 |
Micro-computed X-ray tomography (µm3) | 156.2 ± 63.66 a | 162.08 ± 127.54 b | 311.6 ± 34.23 c | a–c: p = 0.001; b,c: p = 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rayesse, R.; Al-Jabban, O.; Eid, A.; Kabtoleh, A.; Addiego, F.; Mancino, D.; Haikel, Y.; Kharouf, N. Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study. Bioengineering 2024, 11, 213. https://doi.org/10.3390/bioengineering11030213
Al-Rayesse R, Al-Jabban O, Eid A, Kabtoleh A, Addiego F, Mancino D, Haikel Y, Kharouf N. Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study. Bioengineering. 2024; 11(3):213. https://doi.org/10.3390/bioengineering11030213
Chicago/Turabian StyleAl-Rayesse, Raya, Ossama Al-Jabban, Ammar Eid, Alaa Kabtoleh, Frédéric Addiego, Davide Mancino, Youssef Haikel, and Naji Kharouf. 2024. "Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study" Bioengineering 11, no. 3: 213. https://doi.org/10.3390/bioengineering11030213
APA StyleAl-Rayesse, R., Al-Jabban, O., Eid, A., Kabtoleh, A., Addiego, F., Mancino, D., Haikel, Y., & Kharouf, N. (2024). Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study. Bioengineering, 11(3), 213. https://doi.org/10.3390/bioengineering11030213