Determination of a Measurement Procedure for the Study of Cells’ Dielectric Properties through Descriptive Statistic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Line and Sample Preparation
2.2. Experimental Setup
2.3. Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkatesh, M.S.; Raghavan, G.S.V. An Overview of Dielectric Properties Measuring Techniques. Can. Biosyst. Eng. 2005, 47, 15. [Google Scholar]
- Van Dam, R.L.; Borchers, B.; Hendrickx, J.M.H. Methods for Prediction of Soil Dielectric Properties: A Review; Harmon, R.S., Broach, J.T., Holloway, J.H., Jr., Eds.; SPIE: Bellingham, WA, USA, 2005; p. 188. [Google Scholar]
- Kaatze, U. Techniques for Measuring the Microwave Dielectric Properties of Materials. Metrologia 2010, 47, S91–S113. [Google Scholar] [CrossRef]
- Cataldo, A.; Schiavoni, R.; Masciullo, A.; Cannazza, G.; Micelli, F.; De Benedetto, E. Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements. Sensors 2021, 21, 4872. [Google Scholar] [CrossRef] [PubMed]
- D’Alvia, L.; Piuzzi, E.; Cataldo, A.; Del Prete, Z. Permittivity-Based Water Content Calibration Measurement in Wood-Based Cultural Heritage: A Preliminary Study. Sensors 2022, 22, 2148. [Google Scholar] [CrossRef] [PubMed]
- D’Alvia, L.; Pittella, E.; Rizzuto, E.; Piuzzi, E.; Del Prete, Z. A Portable Low-Cost Reflectometric Setup for Moisture Measurement in Cultural Heritage Masonry Unit. Measurement 2022, 189, 110438. [Google Scholar] [CrossRef]
- Pittella, E.; D’Alvia, L.; Palermo, E.; Piuzzi, E. Microwave Characterization of 3D Printed PLA and PLA/CNT Composites. In Proceedings of the IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Naples, Italy, 6–9 September 2021; pp. 52–56. [Google Scholar] [CrossRef]
- Schiavoni, R.; Monti, G.; Tedesco, A.; Tarricone, L.; Piuzzi, E.; de Benedetto, E.; Masciullo, A.; Cataldo, A. Microwave Wearable System for Sensing Skin Hydration. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Jilani, M.T.; Wen, W.P.; Zakariya, M.A.; Cheong, L.Y.; Ur Rehman, M.Z. An Improved Design of Microwave Biosensor for Measurement of Tissues Moisture. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, IMWS-Bio 2014, London, UK, 8–10 December 2014. [Google Scholar] [CrossRef]
- Mohd Shah, S.R.; Asan, N.B.; Velander, J.; Ebrahimizadeh, J.; Perez, M.D.; Mattsson, V.; Blokhuis, T.; Augustine, R. Analysis of Thickness Variation in Biological Tissues Using Microwave Sensors for Health Monitoring Applications. IEEE Access 2019, 7, 156033–156043. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, C.-L. Thickness Measurement of Curved-Surface Biological Tissue with Air Gap Elimination by Triple-Ring Complementary Split-Ring Resonators. In Proceedings of the IEEE 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Sandhya, S.; Prajapati, P.R. Permittivity measurement of biological tissues using interdigital capacitor based resonator. AEU Int. J. Electron. Commun. 2023, 169, 154755. [Google Scholar] [CrossRef]
- Gugliandolo, G.; Vermiglio, G.; Cutroneo, G.; Campobello, G.; Crupi, G.; Donato, N. Inkjet-Printed Capacitive Coupled Ring Resonators Aimed at the Characterization of Cell Cultures. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Martellosio, A.; Pasian, M.; Bozzi, M.; Perregrini, L.; Mazzanti, A.; Svelto, F.; Summers, P.E.; Renne, G.; Bellomi, M. 0.5–50 GHz Dielectric Characterisation of Breast Cancer Tissues. Electron Lett 2015, 51, 974–975. [Google Scholar] [CrossRef]
- Mansouri, S.; Alhadidi, T.; Ben Azouz, M. Breast Cancer Detection Using Low-Frequency Bioimpedance Device. Breast Cancer Targets Ther. 2020, 12, 109–116. [Google Scholar] [CrossRef]
- Mokhtari Dowlatabad, H.; Mamdouh, A.; Yousefpour, N.; Mahdavi, R.; Zandi, A.; Hoseinpour, P.; Moosavi-Kiasari, S.M.S.; Abbasvandi, F.; Kordehlachin, Y.; Parniani, M.; et al. High-Frequency (30 MHz–6 GHz) Breast Tissue Characterization Stabilized by Suction Force for Intraoperative Tumor Margin Assessment. Diagnostics 2023, 13, 179. [Google Scholar] [CrossRef]
- Markx, G.H.; Davey, C.L. The Dielectric Properties of Biological Cells at Radiofrequencies: Applications in Biotechnology. Enzym. Microb. Technol. 1999, 25, 161–171. [Google Scholar] [CrossRef]
- Carraro, S.; D’Alvia, L.; Urciuoli, E.; Peruzzi, B.; Del Prete, Z.; Rizzuto, E. Measuring temperature effects on the dielectric properties of biological liquids by an experimental microwave system. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Carraro, S.; D’Alvia, L.; Cerminara, F.; Del Prete, Z.; Rizzuto, E. Design and response analysis of a circular patch resonator for adherent cell culture detection. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996, 41, 2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Phys. Med. Biol. 1996, 41, 2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmy, H.M.; Hamad, A.M.; Sayed, F.A.; Abdelaziz, Y.S.; Abu Serea, E.S.; Mustafa, A.B.E.; Mohammed, M.A.; Saadeldin, A.M. Dielectric Spectroscopy Signature for Cancer Diagnosis: A Review. Microw. Opt. Technol. Lett. 2020, 62, 3739–3753. [Google Scholar] [CrossRef]
- Hardinata, S.; Deshours, F.; Alquie, G.; Kokabi, H.; Koskas, F. Complementary Split-Ring Resonators for Non-Invasive Characterization of Biological Tissues. In Proceedings of the ANTEM 2018: 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics, Waterloo, ON, Canada, 19–22 August 2018. [Google Scholar] [CrossRef]
- Deshours, F.; Alquié, G.; Kokabi, H.; Rachedi, K.; Tlili, M.; Hardinata, S.; Koskas, F. Improved Microwave Biosensor for Non-Invasive Dielectric Characterization of Biological Tissues. Microelectron. J. 2019, 88, 137–144. [Google Scholar] [CrossRef]
- Hussein, M.; Awwad, F.; Jithin, D.; El Hasasna, H.; Athamneh, K.; Iratni, R. Breast Cancer Cells Exhibits Specific Dielectric Signature in Vitro Using the Open-Ended Coaxial Probe Technique from 200 MHz to 13.6 GHz. Sci. Rep. 2019, 9, 4681. [Google Scholar] [CrossRef] [Green Version]
- Macit, Z.; Aydinalp, C.; Yilmaz, T.; Sert, A.B.O.; Kok, F.N. Broadband Microwave Dielectric Property Comparison of Human Fetal Osteoblastic (HFOB) and Osteosarcoma (SaOS-2) Cell Lines. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Odelstad, E.; Raman, S.; Rydberg, A.; Augustine, R. Experimental Procedure for Determination of the Dielectric Properties of Biological Samples in the 2–50 GHz Range. IEEE J. Transl. Eng. Health Med. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Oueslati, A.; Hlali, A.; Zairi, H. Modeling of a Metamaterial Biosensor Based on Split Ring Resonators for Cancer Cells Detection. In Proceedings of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, SSD 2021, Monastir, Tunisia, 22–25 March 2021; pp. 392–396. [Google Scholar] [CrossRef]
- D’alvia, L.; Carraro, S.; Peruzzi, B.; Urciuoli, E.; Apa, L.; Rizzuto, E. A Principal Component Analysis to Detect Cancer Cell Line Aggressiveness. Acta IMEKO 2023, 12, 1–7. [Google Scholar] [CrossRef]
- D’Alvia, L.; Carraro, S.; Peruzzi, B.; Urciuoli, E.; Palla, L.; Del Prete, Z.; Rizzuto, E. A Novel Microwave Resonant Sensor for Measuring Cancer Cell Line Aggressiveness. Sensors 2022, 22, 4383. [Google Scholar] [CrossRef]
- Trivanović, D.; Nikolić, S.; Krstić, J.; Jauković, A.; Mojsilović, S.; Ilić, V.; Okić-Djordjević, I.; Santibanez, J.F.; Jovčić, G.; Bugarski, D. Characteristics of Human Adipose Mesenchymal Stem Cells Isolated from Healthy and Cancer Affected People and Their Interactions with Human Breast Cancer Cell Line MCF-7 in Vitro. Cell Biol. Int. 2014, 38, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Minn, A.J.; Kang, Y.; Serganova, I.; Gupta, G.P.; Giri, D.D.; Doubrovin, M.; Ponomarev, V.; Gerald, W.L.; Blasberg, R.; Massagué, J. Distinct Organ-Specific Metastatic Potential of Individual Breast Cancer Cells and Primary Tumors. J. Clin. Investig. 2005, 115, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Peruzzi, B.; Fortunati, D.; de Luca, V.; Denger, S.; Casselli, G.; Migliaccio, S.; Teti, A. Modulation of Human Estrogen Receptor Alpha F Promoter by a Protein Kinase C/c-Src-Dependent Mechanism in Osteoblast-like Cells. J. Mol. Endocrinol. 2006, 37, 489–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, E.S.; Burkett, S.S.; Morrow, J.; Lizardo, M.M.; Osborne, T.; Li, S.Q.; Luu, H.H.; Meltzer, P.; Khanna, C. Characterization of the Metastatic Phenotype of a Panel of Established Osteosarcoma Cells. Oncotarget 2015, 6, 29469–29481. [Google Scholar] [CrossRef] [Green Version]
- Urciuoli, E.; Petrini, S.; D’oria, V.; Leopizzi, M.; della Rocca, C.; Peruzzi, B. Nuclear Lamins and Emerin Are Differentially Expressed in Osteosarcoma Cells and Scale with Tumor Aggressiveness. Cancers 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Urciuoli, E.; D’Oria, V.; Petrini, S.; Peruzzi, B. Lamin A/C Mechanosensor Drives Tumor Cell Aggressiveness and Adhesion on Substrates With Tissue-Specific Elasticity. Front. Cell Dev. Biol. 2021, 9, 712377. [Google Scholar] [CrossRef] [PubMed]
- ThermoFisher DMEM Description. Available online: https://www.thermofisher.com/it/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html?SID=fr-dmem-main (accessed on 15 July 2023).
- Lemma, S.; Di Pompo, G.; Porporato, P.E.; Sboarina, M.; Russell, S.; Gillies, R.J.; Baldini, N.; Sonveaux, P.; Avnet, S. MDA-MB-231 Breast Cancer Cells Fuel Osteoclast Metabolism and Activity: A New Rationale for the Pathogenesis of Osteolytic Bone Metastases. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 3254–3264. [Google Scholar] [CrossRef]
- Rucci, N.; Ricevuto, E.; Ficorella, C.; Longo, M.; Perez, M.; Di Giacinto, C.; Funari, A.; Teti, A.; Migliaccio, S. In Vivo Bone Metastases, Osteoclastogenic Ability, and Phenotypic Characterization of Human Breast Cancer Cells. Bone 2004, 34, 697–709. [Google Scholar] [CrossRef]
- Kumar, G.; Ray, K.P. Broadband Microstrip Antenna Array, 1st ed.; Artech House: Boston, MA, USA, 2002; ISBN 1-58053-244-6. [Google Scholar]
- Hardware Manual for MiniVNA Tiny. Available online: https://www.wimo.com/media/manuals/MRS/MiniVNA_Tiny_Antennenanalysator_Antenna-Analyzer_Hardware-Manual_EN.pdf (accessed on 15 July 2023).
- Motulsky, H.J.; Brown, R.E. Detecting Outliers When Fitting Data with Nonlinear Regression—A New Method Based on Robust Nonlinear Regression and the False Discovery Rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [Green Version]
minRL | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | |
---|---|---|---|---|---|---|---|---|---|
DMEM | (MHz) | −13.91 | −13.9 | −14.7 | −13.26 | −14.08 | −13.52 | −13.66 | −13.88 |
SD (MHz) | 0.03 | 0.03 | 0.06 | 0.02 | 0.03 | 0.07 | 0.03 | 0.04 | |
CV (%) | 0.22% | 0.22% | 0.41% | 0.15% | 0.21% | 0.52% | 0.22% | 0.29% | |
SaOS-2 | (MHz) | −14.08 | −15 | −15.57 | −13.22 | −13.6 | −13.8 | −13.39 | −13.27 |
SD (MHz) | 0.07 | 0.03 | 0.06 | 0.04 | 0.03 | 0.03 | 0.02 | 0.08 | |
CV (%) | 0.50% | 0.20% | 0.39% | 0.30% | 0.22% | 0.22% | 0.15% | 0.60% | |
143B | (MHz) | −15.03 | −15.58 | −14.28 | −14.96 | −13.44 | −13.12 | −12.71 | −15.12 |
SD (MHz) | 0.03 | 0.05 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | |
CV (%) | 0.20% | 0.32% | 0.21% | 0.13% | 0.22% | 0.23% | 0.24% | 0.20% | |
MCF-7 | (MHz) | −13.04 | −12.73 | −13.66 | −13.57 | −13.92 | −12.88 | −13.66 | −13.89 |
SD (MHz) | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 | |
CV (%) | 0.23% | 0.24% | 0.22% | 0.29% | 0.29% | 0.23% | 0.29% | 0.29% | |
MDA-MB-231 | (MHz) | −13.1 | −12.51 | −12.76 | −13.33 | −14.11 | −14.1 | −13.58 | −13.54 |
SD (MHz) | 0.02 | 0.02 | 0.04 | 0.02 | 0.04 | 0.03 | 0.02 | 0.04 | |
CV (%) | −13.91 | −13.9 | −14.7 | −13.26 | −14.08 | −13.52 | −13.66 | −13.88 |
fr | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | |
---|---|---|---|---|---|---|---|---|---|
DMEM | (MHz) | 2231.29 | 2231.34 | 2230.69 | 2231.52 | 2230.83 | 2230.48 | 2230.19 | 2230.27 |
SD (MHz) | 0.13 | 0.09 | 0.09 | 0.12 | 0.10 | 0.22 | 0.09 | 0.11 | |
CV (%) | 0.006% | 0.004% | 0.004% | 0.005% | 0.004% | 0.010% | 0.004% | 0.005% | |
SaOS-2 | (MHz) | 2224.88 | 2225.75 | 2225.14 | 2224.6 | 2225.19 | 2225.18 | 2224.34 | 2225.4 |
SD (MHz) | 0.08 | 0.04 | 0.07 | 0.10 | 0.10 | 0.20 | 0.09 | 0.07 | |
CV (%) | 0.004% | 0.002% | 0.003% | 0.004% | 0.004% | 0.009% | 0.004% | 0.003% | |
143B | (MHz) | 2222.76 | 2222.81 | 2222.86 | 2223.64 | 2222.87 | 2223.49 | 2223.59 | 2223.26 |
SD (MHz) | 0.09 | 0.05 | 0.07 | 0.10 | 0.09 | 0.10 | 0.06 | 0.09 | |
CV (%) | 0.004% | 0.002% | 0.003% | 0.004% | 0.004% | 0.004% | 0.003% | 0.004% | |
MCF-7 | (MHz) | 2222.48 | 2222.2 | 2222.44 | 2222.23 | 2222.64 | 2222.17 | 2222.21 | 2222.83 |
SD (MHz) | 0.10 | 0.08 | 0.06 | 0.08 | 0.08 | 0.07 | 0.05 | 0.07 | |
CV (%) | 0.004% | 0.004% | 0.003% | 0.004% | 0.004% | 0.003% | 0.002% | 0.003% | |
MDA-MB-231 | (MHz) | 2223.63 | 2223.62 | 2223.67 | 2223.85 | 2223.94 | 2223.31 | 2223.78 | 2223.89 |
SD (MHz) | 0.10 | 0.08 | 0.06 | 0.08 | 0.09 | 0.08 | 0.07 | 0.08 | |
CV (%) | 0.004% | 0.004% | 0.003% | 0.004% | 0.004% | 0.004% | 0.003% | 0.004% |
FWHM | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | |
---|---|---|---|---|---|---|---|---|---|
DMEM | (MHz) | 41.00 | 40.96 | 39.79 | 46.49 | 44.97 | 46.03 | 45.81 | 45.18 |
SD (MHz) | 0.16 | 0.19 | 0.24 | 0.12 | 0.1 | 0.22 | 0.12 | 0.39 | |
CV (%) | 0.39% | 0.46% | 0.60% | 0.26% | 0.22% | 0.48% | 0.26% | 0.86% | |
SaOS-2 | (MHz) | 39.03 | 40.47 | 39.80 | 48.90 | 49.28 | 48.27 | 48.95 | 46.41 |
SD (MHz) | 0.09 | 0.15 | 0.18 | 0.15 | 0.16 | 0.11 | 0.17 | 0.2 | |
CV (%) | 0.23% | 0.37% | 0.45% | 0.31% | 0.32% | 0.23% | 0.35% | 0.43% | |
143B | (MHz) | 41.28 | 39.59 | 42.02 | 48.91 | 47.55 | 47.7 | 48.5 | 39.33 |
SD (MHz) | 0.13 | 0.16 | 0.13 | 0.15 | 0.14 | 0.086 | 0.21 | 0.15 | |
CV (%) | 0.31% | 0.40% | 0.31% | 0.31% | 0.29% | 0.18% | 0.43% | 0.38% | |
MCF-7 | (MHz) | 48.41 | 49.54 | 46.78 | 46.76 | 45.95 | 48.5 | 46.78 | 44.12 |
SD (MHz) | 0.19 | 0.15 | 0.12 | 0.16 | 0.12 | 0.16 | 0.15 | 0.2 | |
CV (%) | 0.39% | 0.30% | 0.26% | 0.34% | 0.26% | 0.33% | 0.32% | 0.45% | |
MDA-MB-231 | (MHz) | 48.61 | 49.77 | 48.92 | 48.43 | 45.89 | 45.71 | 46.39 | 45.42 |
SD (MHz) | 0.14 | 0.023 | 0.21 | 0.17 | 0.11 | 0.10 | 0.12 | 0.20 | |
CV (%) | 0.29% | 0.05% | 0.43% | 0.35% | 0.24% | 0.22% | 0.26% | 0.44% |
REFM% | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | |
---|---|---|---|---|---|---|---|---|---|
DMEM | minRL | 41.00 | 40.96 | 39.79 | 46.49 | 44.97 | 46.03 | 45.81 | 45.18 |
fr | 0.16 | 0.19 | 0.24 | 0.12 | 0.1 | 0.22 | 0.12 | 0.39 | |
FWHM | 0.39% | 0.46% | 0.60% | 0.26% | 0.22% | 0.48% | 0.26% | 0.86% | |
SaOS-2 | minRL | 39.03 | 40.47 | 39.80 | 48.90 | 49.28 | 48.27 | 48.95 | 46.41 |
fr | 0.09 | 0.15 | 0.18 | 0.15 | 0.16 | 0.11 | 0.17 | 0.2 | |
FWHM | 0.23% | 0.37% | 0.45% | 0.31% | 0.32% | 0.23% | 0.35% | 0.43% | |
143B | minRL | 41.28 | 39.59 | 42.02 | 48.91 | 47.55 | 47.7 | 48.5 | 39.33 |
fr | 0.13 | 0.16 | 0.13 | 0.15 | 0.14 | 0.086 | 0.21 | 0.15 | |
FWHM | 0.31% | 0.40% | 0.31% | 0.31% | 0.29% | 0.18% | 0.43% | 0.38% | |
MCF-7 | minRL | 48.41 | 49.54 | 46.78 | 46.76 | 45.95 | 48.5 | 46.78 | 44.12 |
fr | 0.19 | 0.15 | 0.12 | 0.16 | 0.12 | 0.16 | 0.15 | 0.2 | |
FWHM | 0.39% | 0.30% | 0.26% | 0.34% | 0.26% | 0.33% | 0.32% | 0.45% | |
MDA-MB-231 | minRL | 48.61 | 49.77 | 48.92 | 48.43 | 45.89 | 45.71 | 46.39 | 45.42 |
fr | 0.14 | 0.023 | 0.21 | 0.17 | 0.11 | 0.10 | 0.12 | 0.20 | |
FWHM | 0.29% | 0.05% | 0.43% | 0.35% | 0.24% | 0.22% | 0.26% | 0.44% |
Ref. | Kind of Cells | Kind of Sensor | Freq. Range [GHz] | Measured Parameters 1 | Procedure |
---|---|---|---|---|---|
[24] | MCF-10A, Hs578T, MDA-MB-231, MCF-7, T-47D, HT-29, culture medium (three types) | Open-ended coaxial probe | 0.2–13.6 | ε′, ε″ | Average of multiple acquisitions. Three replicates for specimens |
[25] | hFOB, SaOS-2, DMEM | Open-ended coaxial probe | 0.5–10.0 | ε*, σ | Single acquisition on two replicates |
[26] | hFOB, SaOS-2, C2C12 | Open-ended coaxial probe | 2.0–50.0 | ε′, ε″ | Average of multiple acquisitions. |
[27] | SW620, Hs578T, MCF-7 | Split-ring resonators | 1.0–8.0 | fr (GHz), Δfr (MHz), Q-factor | Simulation |
[29] | DMEM, SaOS-2, 143B, MCF-7, MDA-MB-231 | Circular-patch resonator | 1.0–3.0 | minRL (dB), fr (GHz), FWHM (MHz) | Single acquisition. Eight replicates for specimens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alvia, L.; Peruzzi, B.; Apa, L.; Del Prete, Z.; Rizzuto, E. Determination of a Measurement Procedure for the Study of Cells’ Dielectric Properties through Descriptive Statistic. Bioengineering 2023, 10, 907. https://doi.org/10.3390/bioengineering10080907
D’Alvia L, Peruzzi B, Apa L, Del Prete Z, Rizzuto E. Determination of a Measurement Procedure for the Study of Cells’ Dielectric Properties through Descriptive Statistic. Bioengineering. 2023; 10(8):907. https://doi.org/10.3390/bioengineering10080907
Chicago/Turabian StyleD’Alvia, Livio, Barbara Peruzzi, Ludovica Apa, Zaccaria Del Prete, and Emanuele Rizzuto. 2023. "Determination of a Measurement Procedure for the Study of Cells’ Dielectric Properties through Descriptive Statistic" Bioengineering 10, no. 8: 907. https://doi.org/10.3390/bioengineering10080907
APA StyleD’Alvia, L., Peruzzi, B., Apa, L., Del Prete, Z., & Rizzuto, E. (2023). Determination of a Measurement Procedure for the Study of Cells’ Dielectric Properties through Descriptive Statistic. Bioengineering, 10(8), 907. https://doi.org/10.3390/bioengineering10080907