Bioactive Formulations in Agri-Food-Pharma: Source and Applications
- Recent developments in the production of natural compounds from various bioresources and their formulations as bioactives;
- Engineered approaches for enhanced biological properties;
- Potential industrial applications of new bioactive formulations through novel strategies;
- Identification of novel compounds and bioprocess tools to improve the quantity and quality of such products;
- Increasing knowledge on the bioactive formulations on regulation at the genomic and molecular levels.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chuetor, S.; Panakkal, E.J.; Ruensodsai, T.; Cheenkachorn, K.; Kirdponpattara, S.; Cheng, Y.-S.; Sriariyanun, M. Improvement of enzymatic saccharification and ethanol production from rice straw using recycled ionic liquid: The effect of anti-solvent mixture. Bioengineering 2022, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Kim, B.; Lee, K.; Choi, H.-Y. Vascular relaxation and blood pressure lowering effects of Prunus mume in rats. Bioengineering 2023, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Jug, U.; Naumoska, K.; Malovrh, T. Japanese knotweed rhizome bark extract inhibits live SARS-CoV-2 in vitro. Bioengineering 2022, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Kebeish, R.; Hamdy, E.; Al-Zoubi, O.; Habeeb, T.; Osailan, R.; El-Ayouty, Y. A biotechnological approach for the production of pharmaceutically active human interferon-α from Raphanus sativus L. plants. Bioengineering 2022, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Chang, C.-C.; Hsuan, C.-F.; Chang, T.-H.; Chen, Y.-L.; Wang, Y.-Y.; Yu, T.-H.; Wu, C.-C.; Houng, J.-Y. Neuroprotective effect of Abelmoschus manihot flower extracts against the H2O2-induced cytotoxicity, oxidative stress and inflammation in PC12 cells. Bioengineering 2022, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Leng, T.; Sun, X.; Zheng, J.; Li, R.; Chen, J.; Hu, F.; Liu, F.; Hua, Q. Global regulator AdpA_1075 regulates morphological differentiation and ansamitocin production in Actinosynnema pretiosum subsp. auranticum. Bioengineering 2022, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Filho, L.C.; Santos, D.I.; Brito, L.; Moldão-Martins, M.; Alves, V.D. Storage stability and in vitro bioaccessibility of microencapsulated tomato (Solanum lycopersicum L.) pomace extract. Bioengineering 2022, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Dehabadi, L.; Ma, Y.-C.; Wilson, L.D. Development of novel lipid-based formulations for water-soluble vitamin C versus fat-soluble vitamin D3. Bioengineering 2022, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Alharbi, M.; Binothman, N.; Aljadani, M.; Qahl, S.H.; Jaber, F.A.; Huwaikem, M.; Sheikh, H.M.; et al. Pomegranate pomace extract with antioxidant, anticancer, antimicrobial, and antiviral activity enhances the quality of strawberry-yogurt smoothie. Bioengineering 2022, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Das, P.C.; Vista, A.R.; Tabil, L.G.; Baik, O.-D. Postharvest operations of cannabis and their effect on cannabinoid content: A review. Bioengineering 2022, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Puttasiddaiah, R.; Lakshminarayana, R.; Somashekar, N.L.; Gupta, V.K.; Inbaraj, B.S.; Usmani, Z.; Raghavendra, V.B.; Sridhar, K.; Sharma, M. Advances in nanofabrication technology for nutraceuticals: New insights and future trends. Bioengineering 2022, 9, 478. [Google Scholar] [CrossRef] [PubMed]
- Rachitha, P.; Krishnaswamy, K.; Lazar, R.A.; Gupta, V.K.; Inbaraj, B.S.; Raghavendra, V.B.; Sharma, M.; Sridhar, K. Attenuation of hyperlipidemia by medicinal formulations of Emblica officinalis synergized with nanotechnological approaches. Bioengineering 2023, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Bala, S.; Garg, D.; Sridhar, K.; Inbaraj, B.S.; Singh, R.; Kamma, S.; Tripathi, M.; Sharma, M. Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering 2023, 10, 152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridhar, K.; Usmani, Z.; Sharma, M. Bioactive Formulations in Agri-Food-Pharma: Source and Applications. Bioengineering 2023, 10, 191. https://doi.org/10.3390/bioengineering10020191
Sridhar K, Usmani Z, Sharma M. Bioactive Formulations in Agri-Food-Pharma: Source and Applications. Bioengineering. 2023; 10(2):191. https://doi.org/10.3390/bioengineering10020191
Chicago/Turabian StyleSridhar, Kandi, Zeba Usmani, and Minaxi Sharma. 2023. "Bioactive Formulations in Agri-Food-Pharma: Source and Applications" Bioengineering 10, no. 2: 191. https://doi.org/10.3390/bioengineering10020191
APA StyleSridhar, K., Usmani, Z., & Sharma, M. (2023). Bioactive Formulations in Agri-Food-Pharma: Source and Applications. Bioengineering, 10(2), 191. https://doi.org/10.3390/bioengineering10020191