Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Gas Chromatography–Mass Spectrometry
2.3. Chiral Gas Chromatography–Mass Spectrometry
3. Results and Discussion
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Eslamieh, J. Commiphora gileadensis. Cactus Succul. J. 2011, 83, 206–210. [Google Scholar] [CrossRef]
- Willis, J.C. A Dictionary of the Flowering Plants and Ferns, 8th ed.; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Hepper, F.N.; Fris, I. Plants of Pehr Forsskal’s Flora Aegyptiaco-Arabica; Royal Botanic Gardens: Kew, UK, 2000. [Google Scholar]
- Boulos, L. Flora of Egypt. Volume One: Azollaceae—Oxalidaceae; Al Hadara Publishing: Cairo, Egypt, 1999. [Google Scholar]
- Ben Yehoshua, S.; Rachmilevitch, S.; Amiel, E.; Ofir, R.; Dudai, N.; Soloway, E. Revival of the extinct balm of Gilead in Istrael: Studying its anti-cancer activity. Acta Hortic. 2015, 1088, 509–514. [Google Scholar] [CrossRef]
- Iluz, D.; Hoffman, M.; Gilboa-Garber, N.; Amar, Z. Medicinal properties of Commiphora gileadensis. Afr. J. Pharm. Pharmacol. 2010, 4, 516–520. [Google Scholar]
- Feliks, Y. The incese of the tabernacle. In Pomegranites & Golden Bells; Wright, D.P., Freedman, D.N., Hurvitz, A., Eds.; Eisenbrauns: Winona Lake, Indiana, 1995; pp. 125–149. [Google Scholar]
- Dudai, N.; Raz, A.; Hofesh, N.; Rozenzweig, N.; Aharon, R.; Fischer, R.; Chaimovitsh, D.; Daniel, S. Antioxidant activity and phenol content of plant germplasm originating in the Dead Sea area. Isr. J. Plant Sci. 2008, 56, 227–233. [Google Scholar] [CrossRef]
- Lev, E. Reconstructed materia medica of the Medieval and Ottoman al-Sham. J. Ethnopharmacol. 2002, 80, 167–179. [Google Scholar] [CrossRef]
- Lardos, A. The botanical materia medica of the Iatrosophikon—A collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol. 2006, 104, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.; Amar, Z. Reconstruction of the inventory of materia medica used by members of the Jewish community of medieval Cairo according to prescriptions found in the Taylor-Schechter Genizah collection, Cambridge. J. Ethnopharmacol. 2006, 108, 428–444. [Google Scholar] [CrossRef] [PubMed]
- Lev, E. Drugs held and sold by pharmacists of the Jewish community of medieval (11–14th centuries) Cairo according to lists of materia medica found at the Taylor-Schechter Genizah collection, Cambridge. J. Ethnopharmacol. 2007, 110, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.; Amar, Z. “Fossils” of practical medical knowledge from medieval Cairo. J. Ethnopharmacol. 2008, 119, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Doa’a Anwar, I.; Amani, S.; Alzoreqy, A.; Al-Dbhani, A.; Al-Fteih, L.; Abu-Al-fatah, T.; QojaNazer, H.; Alnoor, E. Therapeutic and preventive effects of Commiphora gileadensis against diethylnitrosamine-induced hepatic injury in albino rats. Afr. J. Pharm. Pharmacol. 2016, 10, 356–363. [Google Scholar]
- Al-Mahbashi, H.M.; El-Shaibany, A.; Saad, F.A. Evaluation of acute toxicity and antimicrobial effects of the bark extract of Bisham (Commiphora gileadensis L.). J. Chem. Pharm. Res. 2015, 7, 810–814. [Google Scholar]
- Essawi, T.; Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000, 70, 343–349. [Google Scholar] [CrossRef]
- Wineman, E.; Douglas, I.; Wineman, V.; Sharova, K.; Jaspars, M.; Meshner, S.; Bentwich, Z.; Cohen, G.; Shtevi, A. Commiphora gileadensis sap extract induces cell cycle-dependent death in immortalized keratinocytes and human dermoid carcinoma cells. J. Herb. Med. 2015, 5, 199–206. [Google Scholar] [CrossRef]
- Amiel, E.; Ofir, R.; Dudai, N.; Soloway, E.; Rabinsky, T.; Rachmilevitch, S. β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evidence-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Abbas, F.A.; Al-Massarany, S.M.; Khan, S.; Al-Howiriny, T.A.; Mossa, J.S.; Abourashed, E.A. Phytochemical and biological studies on Saudi Commiphora opobalsamum L. Nat. Prod. Res. 2007, 21, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Awadh Ali, N.A.; Wurster, M.; Arnold, N.; Lindequist, U.; Wessjohann, L. Essential oil composition from oleogum resin of Soqotraen Commiphora kua. Rec. Nat. Prod. 2008, 2, 70–75. [Google Scholar]
- Awadh Ali, N.A.; Wurster, M.; Lindequist, U. Chemical composition of essential oil from the olegum resin of Commiphora habessinica (Berg.) Engl. from Yemen. J. Essent. Oil Bear. Plants 2009, 12, 244–249. [Google Scholar]
- Mothana, R.A.; Al-Rehaily, A.J.; Schultze, W. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules 2010, 15, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Asres, K.; Tei, A.; Moges, G.; Sporer, F.; Wink, M. Terpenoid composition of the wound-induced bark exudate of Commiphora tenuis from Ethiopia. Planta Med. 1998, 64, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.C.S.; Milet-Pinheiro, P.; Da Silva, P.C.B.; Da Silva, A.G.; Da Silva, M.V.; Navarro, D.M.; Da Silva, N.H. (E)-Caryophyllene and α-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of commiphora leptophloeos leaf oil. PLoS ONE 2015, 10, e0144586. [Google Scholar] [CrossRef] [PubMed]
- Pichette, A.; Larouche, P.L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006, 20, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herb. Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
- Wanner, J.; Schmidt, E.; Bail, S.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Atanasova, T.; Stoyanova, A. Chemical composition and antibacterial activity of selected essential oils and some of their main compounds. Nat. Prod. Commun. 2010, 5, 1359–1364. [Google Scholar] [PubMed]
- Kubo, I.; Muroi, H.; Kubo, A. Naturally occurring antiacne agents. J. Nat. Prod. 1994, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Delgado, B.; Fernandez, P.S.; Palop, A.; Periago, P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 2004, 21, 327–334. [Google Scholar] [CrossRef]
- Kiskó, G.; Roller, S. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol. 2005, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, K.A.; Carson, C.F.; Riley, T. V Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. 2007, 62c, 507–513. [Google Scholar] [CrossRef]
- Basar, S.; Koch, A.; König, W.A. A verticillane-type diterpene from Boswellia carterii essential oil. Flavour Fragr. J. 2001, 16, 315–318. [Google Scholar] [CrossRef]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Pappas, R.S. First reporting on the chemistry and biological activity of a novel Boswellia chemotype: The methoxy alkane frankincense. Global J. Sci. Front. Res. B Chem. 2016, 16, 1–9. [Google Scholar]
- Wong, Y.F.; Davies, N.W.; Chin, S.T.; Larkman, T.; Marriott, P.J. Enantiomeric distribution of selected terpenes for authenticity assessment of Australian Melaleuca alternifolia oil. Ind. Crop. Prod. 2015, 67, 475–483. [Google Scholar] [CrossRef]
RI a | Compounds | Wild Plant Parts | Commercial | ||
---|---|---|---|---|---|
Stem | Leaf | Fruit | Oil | ||
890 | Styrene | 0.1 | 0.1 | ||
900 | Nonane | 0.1 | |||
921 | Tricyclene | 0.1 | 0.1 | 0.1 | 0.1 |
924 | α-Thujene | 2.8 | 1.6 | 1.6 | 1.7 |
932 | α-Pinene | 15.4 | 11.2 | 15.9 | 18.4 |
946 | α-Fenchene | tr b | tr | ||
948 | Camphene | 1.4 | 1.0 | 0.7 | 1.5 |
952 | Thuja-2,4(10)-diene | 0.1 | |||
964 | 6-Methylheptan-2-ol | tr | 0.1 | ||
972 | Sabinene | 28.5 | 15.8 | 35.9 | 29.1 |
977 | β-Pinene | 7.5 | 5.8 | 18.0 | 8.2 |
988 | Myrcene | 2.8 | 1.7 | 2.2 | 1.7 |
1002 | Octanal | 0.1 | |||
1003 | p-Mentha-1(7),8-diene (Pseudolimonene) | tr | |||
1006 | α-Phellandrene | 0.4 | 0.2 | tr | 0.2 |
1008 | δ-3-Carene | tr | |||
1014 | 1,4-Cineole | 0.1 | |||
1016 | α-Terpinene | 3.0 | 1.8 | 0.1 | 2.0 |
1024 | p-Cymene | 4.8 | 8.4 | 5.3 | 6.4 |
1028 | Limonene | 1.9 | 1.9 | 6.2 | 1.3 |
1029 | β-Phellandrene | 1.6 | 1.4 | 1.3 | 1.0 |
1031 | 1,8-Cineole | 0.2 | 0.2 | 0.2 | |
1034 | (Z)-β-Ocimene | 0.6 | 0.7 | 0.3 | 0.8 |
1044 | (E)-β-Ocimene | 0.1 | 0.3 | tr | 0.1 |
1057 | γ-Terpinene | 8.1 | 5.8 | 0.7 | 5.9 |
1068 | cis-Sabinene hydrate | 0.1 | 0.1 | 0.1 | 0.2 |
1084 | Terpinolene | 1.2 | 1.3 | 0.2 | 0.7 |
1088 | p-Cymenene | tr | 0.1 | tr | 0.1 |
1098 | α-Pinene oxide | 0.1 | |||
1098 | Linalool | 0.1 | 0.1 | 1.0 | |
1099 | trans-Sabinene hydrate | tr | 0.1 | 0.1 | |
1103 | Nonanal | tr | |||
1112 | 2-Methyl-6-methylen-octa-1,7-dien-3-one | 0.1 | |||
1123 | cis-p-Menth-2-en-1-ol | 0.7 | 0.8 | 0.2 | 0.2 |
1124 | Cyclooctanone | 0.1 | 0.1 | tr | tr |
1126 | allo-Ocimene | tr | tr | ||
1127 | 4,5-Epoxy-trans-carene | tr | |||
1134 | Terpin-3-en-1-ol | tr | 0.1 | ||
1139 | trans-Pinocarveol | 0.1 | 0.2 | 0.1 | 0.5 |
1141 | trans-p-Menth-2-en-1-ol | 0.4 | 0.7 | 0.2 | 0.2 |
1143 | trans-Verbenol | 0.1 | tr | 0.1 | |
1145 | Camphor | 0.1 | |||
1155 | Sabina ketone | tr | 0.1 | 0.1 | 0.1 |
1160 | Pinocarvone | tr | 0.1 | ||
1167 | α-Phellandrene epoxide | tr | tr | ||
1170 | Borneol | 0.1 | 0.3 | 0.1 | 0.4 |
1180 | Terpinen-4-ol | 11.6 | 18.5 | 5.3 | 6.9 |
1182 | Thuj-3-en-10-al | tr | |||
1183 | p-Methylacetophenone | tr | tr | ||
1185 | p-Cymen-8-ol | 0.1 | 0.4 | 0.2 | 0.2 |
1190 | Myrtenol | tr | tr | tr | |
1193 | α-Terpineol | 1.3 | 2.6 | 0.7 | 0.9 |
1195 | cis-Piperitol | 0.2 | 0.2 | 0.1 | |
1204 | Decanal | 0.6 | |||
1206 | Verbenone | 0.1 | |||
1207 | trans-Piperitol | 0.3 | 0.6 | 0.1 | 0.1 |
1216 | endo-Fenchyl acetate | tr | tr | ||
1217 | trans-Carveol | tr | |||
1223 | Nerol | tr | |||
1241 | Cuminaldehyde | 0.1 | |||
1248 | Linalyl acetate | tr | 4.4 | ||
1255 | Methyl citronellate | 0.1 | 0.1 | 0.1 | |
1270 | 1-Decanol | tr | |||
1278 | cis-Linalool oxide acetate (pyranoid) | tr | 0.1 | tr | |
1282 | Bornyl acetate | 2.9 | 4.4 | 0.4 | 3.3 |
1285 | Isobornyl acetate | tr | 0.1 | tr | 0.1 |
1287 | Thymol | tr | 0.1 | ||
1291 | p-Menth-1-en-9-ol | tr | |||
1294 | Terpinen-4-ol acetate | tr | 0.1 | ||
1295 | Carvacrol | 0.1 | 0.3 | tr | |
1300 | Tridecene | tr | |||
1317 | p-Mentha-1,4,-dien-7-ol | 0.1 | |||
1321 | p-Menth-8-en-1,7-diol | 0.1 | |||
1321 | Methyl decanoate | 0.1 | 0.1 | tr | |
1339 | p-Cymene-8-ol acetate | 0.1 | |||
1345 | α-Terpinyl acetate | 0.1 | |||
1349 | Eugenol | tr | |||
1356 | Neryl acetate | tr | 0.1 | ||
1360 | Decanoic acid | tr | |||
1367 | α-Ylangene | 0.2 | |||
1374 | α-Copaene | tr | |||
1376 | Geranyl acetate | 0.1 | |||
1381 | α-Bourbonene | 0.1 | |||
1397 | Methyleugenol | 0.1 | 0.1 | ||
1407 | Dodecanal | 0.1 | |||
1417 | (E)-Caryophyllene | 0.1 | 1.9 | 0.1 | tr |
1439 | 6,9-Guaiadiene | 0.1 | |||
1447 | trans-Muurola-3,5-diene | 0.2 | |||
1453 | α-Humulene | tr | 0.1 | tr | |
1457 | Alloaromadendrene | 0.1 | tr | ||
1476 | γ-Curcumene | 0.1 | |||
1479 | Germacrene D | 0.1 | 1.2 | 0.2 | 0.1 |
1489 | Viridiflorene | tr | 0.1 | ||
1493 | Bicyclogermacrene | tr | 0.1 | ||
1496 | α-Muurolene | 0.1 | 0.1 | tr | |
1500 | epi-Zonarene | tr | 0.1 | ||
1502 | (E,E)-α-Farnesene | 0.1 | tr | ||
1505 | β-Bisabolene | tr | 0.1 | 0.1 | |
1511 | γ-Cadinene | tr | 0.4 | tr | |
1516 | δ-Cadinene | 0.1 | 0.3 | 0.3 | tr |
1526 | α-Panasinsen | 0.1 | |||
1559 | (E)-Nerolidol | 0.2 | |||
1569 | (3E)-Hex-3-enyl benzoate | 0.1 | |||
1574 | Spathulenol | 0.9 | 0.3 | ||
1580 | Caryophyllene oxide | 0.5 | tr | tr | |
1583 | Globulol | 0.2 | |||
1592 | Viridiflorol | tr | |||
1613 | 1,10-di-epi-Cubenol | 0.2 | 2.6 | tr | |
1630 | iso-Spathulenol | 0.1 | |||
1637 | Alloaromadendrene epoxide | 0.2 | 0.1 | ||
1640 | α-Muurolol (Torreyol) | tr | 0.2 | 0.1 | |
1642 | τ-Muurolol | 0.1 | 0.2 | ||
1644 | δ-Cadinol | 0.1 | 0.1 | ||
1653 | α-Cadinol | tr | 0.4 | 0.8 | |
1657 | Eudesm-4(15),7-dien-1α-ol | 0.1 | tr | ||
1666 | β-Atlantone | tr | |||
1688 | Eudesma-4(15),7-dien-1β-ol | 0.1 | |||
1730 | Oplopanone | 0.1 | |||
1860 | Platambin | 0.1 | tr | ||
Monoterpene hydrocarbons | 80.2 | 59.0 | 88.6 | 79.4 | |
Oxygenated monoterpenoids | 18.6 | 30.0 | 8.0 | 19.5 | |
Sesquiterpene hydrocarbons | 0.5 | 4.9 | 0.7 | 0.3 | |
Oxygenated sesquiterpenoids | 0.3 | 5.7 | 1.7 | tr | |
Others | 0.3 | 0.4 | 1.0 | 0.2 | |
Total Identified | 99.9 | 100.0 | 100.0 | 99.4 |
Compounds | C. gileadensis | B. sacra [35] | B. carterii [35] | Boswellia sp. [36] | ||||
---|---|---|---|---|---|---|---|---|
Stem | Leaf | Fruit | Commercial | |||||
α-Thujene | 30:70 | 29:71 | 28:72 | 28:72 | 73.5:26.5 | 3.8:96.2 | 43:57 | 36:64 |
α-Pinene | 25:75 | 28:72 | 29:71 | 28:72 | 89.2:10.8 | 40.5:59.5 | 83:17 | 76:34 |
Sabinene | 8:92 | 8:92 | 8:92 | 7:93 | 87.5:12.5 | 14.5:85.5 | 93:7 | 98:2 |
β-Pinene | 3.5:96.5 | 3:97 | 3.7:96.3 | 3:97 | 75.2:24.8 | 40.8:59.2 | ||
Limonene | 33:67 | 32:68 | 32:68 | 31.6:68.4 | 21.3:78.7 | 27.0:73.0 | 73:27 | 65:35 |
Linalool | 59:41 | 59:41 | 60:40 | |||||
Borneol | 0:100 | 0:100 | 0:100 | 0.1:99.9 | ||||
Terpinen-4-ol | 30:70 | 31:69 | 30:70 | 30:70 | 81:19 | 71:29 | ||
α-Terpineol | 30:70 | 32:68 | 30:70 | 31:69 | ||||
Linalyl acetate | 99:1 | |||||||
Bornyl acetate | 0:100 | 0:100 | 0:100 | 0:100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudai, N.; Shachter, A.; Satyal, P.; Setzer, W.N. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines 2017, 4, 66. https://doi.org/10.3390/medicines4030066
Dudai N, Shachter A, Satyal P, Setzer WN. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines. 2017; 4(3):66. https://doi.org/10.3390/medicines4030066
Chicago/Turabian StyleDudai, Nativ, Alona Shachter, Prabodh Satyal, and William N. Setzer. 2017. "Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)" Medicines 4, no. 3: 66. https://doi.org/10.3390/medicines4030066
APA StyleDudai, N., Shachter, A., Satyal, P., & Setzer, W. N. (2017). Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines, 4(3), 66. https://doi.org/10.3390/medicines4030066