Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Gas Chromatography–Mass Spectrometry
2.3. Chiral Gas Chromatography–Mass Spectrometry
3. Results and Discussion
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Eslamieh, J. Commiphora gileadensis. Cactus Succul. J. 2011, 83, 206–210. [Google Scholar] [CrossRef]
- Willis, J.C. A Dictionary of the Flowering Plants and Ferns, 8th ed.; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Hepper, F.N.; Fris, I. Plants of Pehr Forsskal’s Flora Aegyptiaco-Arabica; Royal Botanic Gardens: Kew, UK, 2000. [Google Scholar]
- Boulos, L. Flora of Egypt. Volume One: Azollaceae—Oxalidaceae; Al Hadara Publishing: Cairo, Egypt, 1999. [Google Scholar]
- Ben Yehoshua, S.; Rachmilevitch, S.; Amiel, E.; Ofir, R.; Dudai, N.; Soloway, E. Revival of the extinct balm of Gilead in Istrael: Studying its anti-cancer activity. Acta Hortic. 2015, 1088, 509–514. [Google Scholar] [CrossRef]
- Iluz, D.; Hoffman, M.; Gilboa-Garber, N.; Amar, Z. Medicinal properties of Commiphora gileadensis. Afr. J. Pharm. Pharmacol. 2010, 4, 516–520. [Google Scholar]
- Feliks, Y. The incese of the tabernacle. In Pomegranites & Golden Bells; Wright, D.P., Freedman, D.N., Hurvitz, A., Eds.; Eisenbrauns: Winona Lake, Indiana, 1995; pp. 125–149. [Google Scholar]
- Dudai, N.; Raz, A.; Hofesh, N.; Rozenzweig, N.; Aharon, R.; Fischer, R.; Chaimovitsh, D.; Daniel, S. Antioxidant activity and phenol content of plant germplasm originating in the Dead Sea area. Isr. J. Plant Sci. 2008, 56, 227–233. [Google Scholar] [CrossRef]
- Lev, E. Reconstructed materia medica of the Medieval and Ottoman al-Sham. J. Ethnopharmacol. 2002, 80, 167–179. [Google Scholar] [CrossRef]
- Lardos, A. The botanical materia medica of the Iatrosophikon—A collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol. 2006, 104, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.; Amar, Z. Reconstruction of the inventory of materia medica used by members of the Jewish community of medieval Cairo according to prescriptions found in the Taylor-Schechter Genizah collection, Cambridge. J. Ethnopharmacol. 2006, 108, 428–444. [Google Scholar] [CrossRef] [PubMed]
- Lev, E. Drugs held and sold by pharmacists of the Jewish community of medieval (11–14th centuries) Cairo according to lists of materia medica found at the Taylor-Schechter Genizah collection, Cambridge. J. Ethnopharmacol. 2007, 110, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Lev, E.; Amar, Z. “Fossils” of practical medical knowledge from medieval Cairo. J. Ethnopharmacol. 2008, 119, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Doa’a Anwar, I.; Amani, S.; Alzoreqy, A.; Al-Dbhani, A.; Al-Fteih, L.; Abu-Al-fatah, T.; QojaNazer, H.; Alnoor, E. Therapeutic and preventive effects of Commiphora gileadensis against diethylnitrosamine-induced hepatic injury in albino rats. Afr. J. Pharm. Pharmacol. 2016, 10, 356–363. [Google Scholar]
- Al-Mahbashi, H.M.; El-Shaibany, A.; Saad, F.A. Evaluation of acute toxicity and antimicrobial effects of the bark extract of Bisham (Commiphora gileadensis L.). J. Chem. Pharm. Res. 2015, 7, 810–814. [Google Scholar]
- Essawi, T.; Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000, 70, 343–349. [Google Scholar] [CrossRef]
- Wineman, E.; Douglas, I.; Wineman, V.; Sharova, K.; Jaspars, M.; Meshner, S.; Bentwich, Z.; Cohen, G.; Shtevi, A. Commiphora gileadensis sap extract induces cell cycle-dependent death in immortalized keratinocytes and human dermoid carcinoma cells. J. Herb. Med. 2015, 5, 199–206. [Google Scholar] [CrossRef]
- Amiel, E.; Ofir, R.; Dudai, N.; Soloway, E.; Rabinsky, T.; Rachmilevitch, S. β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evidence-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Abbas, F.A.; Al-Massarany, S.M.; Khan, S.; Al-Howiriny, T.A.; Mossa, J.S.; Abourashed, E.A. Phytochemical and biological studies on Saudi Commiphora opobalsamum L. Nat. Prod. Res. 2007, 21, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Awadh Ali, N.A.; Wurster, M.; Arnold, N.; Lindequist, U.; Wessjohann, L. Essential oil composition from oleogum resin of Soqotraen Commiphora kua. Rec. Nat. Prod. 2008, 2, 70–75. [Google Scholar]
- Awadh Ali, N.A.; Wurster, M.; Lindequist, U. Chemical composition of essential oil from the olegum resin of Commiphora habessinica (Berg.) Engl. from Yemen. J. Essent. Oil Bear. Plants 2009, 12, 244–249. [Google Scholar]
- Mothana, R.A.; Al-Rehaily, A.J.; Schultze, W. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules 2010, 15, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Asres, K.; Tei, A.; Moges, G.; Sporer, F.; Wink, M. Terpenoid composition of the wound-induced bark exudate of Commiphora tenuis from Ethiopia. Planta Med. 1998, 64, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.C.S.; Milet-Pinheiro, P.; Da Silva, P.C.B.; Da Silva, A.G.; Da Silva, M.V.; Navarro, D.M.; Da Silva, N.H. (E)-Caryophyllene and α-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of commiphora leptophloeos leaf oil. PLoS ONE 2015, 10, e0144586. [Google Scholar] [CrossRef] [PubMed]
- Pichette, A.; Larouche, P.L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006, 20, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herb. Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
- Wanner, J.; Schmidt, E.; Bail, S.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Atanasova, T.; Stoyanova, A. Chemical composition and antibacterial activity of selected essential oils and some of their main compounds. Nat. Prod. Commun. 2010, 5, 1359–1364. [Google Scholar] [PubMed]
- Kubo, I.; Muroi, H.; Kubo, A. Naturally occurring antiacne agents. J. Nat. Prod. 1994, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Delgado, B.; Fernandez, P.S.; Palop, A.; Periago, P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 2004, 21, 327–334. [Google Scholar] [CrossRef]
- Kiskó, G.; Roller, S. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol. 2005, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T. V Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. 2007, 62c, 507–513. [Google Scholar] [CrossRef]
- Basar, S.; Koch, A.; König, W.A. A verticillane-type diterpene from Boswellia carterii essential oil. Flavour Fragr. J. 2001, 16, 315–318. [Google Scholar] [CrossRef]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Pappas, R.S. First reporting on the chemistry and biological activity of a novel Boswellia chemotype: The methoxy alkane frankincense. Global J. Sci. Front. Res. B Chem. 2016, 16, 1–9. [Google Scholar]
- Wong, Y.F.; Davies, N.W.; Chin, S.T.; Larkman, T.; Marriott, P.J. Enantiomeric distribution of selected terpenes for authenticity assessment of Australian Melaleuca alternifolia oil. Ind. Crop. Prod. 2015, 67, 475–483. [Google Scholar] [CrossRef]
RI a | Compounds | Wild Plant Parts | Commercial | ||
---|---|---|---|---|---|
Stem | Leaf | Fruit | Oil | ||
890 | Styrene | 0.1 | 0.1 | ||
900 | Nonane | 0.1 | |||
921 | Tricyclene | 0.1 | 0.1 | 0.1 | 0.1 |
924 | α-Thujene | 2.8 | 1.6 | 1.6 | 1.7 |
932 | α-Pinene | 15.4 | 11.2 | 15.9 | 18.4 |
946 | α-Fenchene | tr b | tr | ||
948 | Camphene | 1.4 | 1.0 | 0.7 | 1.5 |
952 | Thuja-2,4(10)-diene | 0.1 | |||
964 | 6-Methylheptan-2-ol | tr | 0.1 | ||
972 | Sabinene | 28.5 | 15.8 | 35.9 | 29.1 |
977 | β-Pinene | 7.5 | 5.8 | 18.0 | 8.2 |
988 | Myrcene | 2.8 | 1.7 | 2.2 | 1.7 |
1002 | Octanal | 0.1 | |||
1003 | p-Mentha-1(7),8-diene (Pseudolimonene) | tr | |||
1006 | α-Phellandrene | 0.4 | 0.2 | tr | 0.2 |
1008 | δ-3-Carene | tr | |||
1014 | 1,4-Cineole | 0.1 | |||
1016 | α-Terpinene | 3.0 | 1.8 | 0.1 | 2.0 |
1024 | p-Cymene | 4.8 | 8.4 | 5.3 | 6.4 |
1028 | Limonene | 1.9 | 1.9 | 6.2 | 1.3 |
1029 | β-Phellandrene | 1.6 | 1.4 | 1.3 | 1.0 |
1031 | 1,8-Cineole | 0.2 | 0.2 | 0.2 | |
1034 | (Z)-β-Ocimene | 0.6 | 0.7 | 0.3 | 0.8 |
1044 | (E)-β-Ocimene | 0.1 | 0.3 | tr | 0.1 |
1057 | γ-Terpinene | 8.1 | 5.8 | 0.7 | 5.9 |
1068 | cis-Sabinene hydrate | 0.1 | 0.1 | 0.1 | 0.2 |
1084 | Terpinolene | 1.2 | 1.3 | 0.2 | 0.7 |
1088 | p-Cymenene | tr | 0.1 | tr | 0.1 |
1098 | α-Pinene oxide | 0.1 | |||
1098 | Linalool | 0.1 | 0.1 | 1.0 | |
1099 | trans-Sabinene hydrate | tr | 0.1 | 0.1 | |
1103 | Nonanal | tr | |||
1112 | 2-Methyl-6-methylen-octa-1,7-dien-3-one | 0.1 | |||
1123 | cis-p-Menth-2-en-1-ol | 0.7 | 0.8 | 0.2 | 0.2 |
1124 | Cyclooctanone | 0.1 | 0.1 | tr | tr |
1126 | allo-Ocimene | tr | tr | ||
1127 | 4,5-Epoxy-trans-carene | tr | |||
1134 | Terpin-3-en-1-ol | tr | 0.1 | ||
1139 | trans-Pinocarveol | 0.1 | 0.2 | 0.1 | 0.5 |
1141 | trans-p-Menth-2-en-1-ol | 0.4 | 0.7 | 0.2 | 0.2 |
1143 | trans-Verbenol | 0.1 | tr | 0.1 | |
1145 | Camphor | 0.1 | |||
1155 | Sabina ketone | tr | 0.1 | 0.1 | 0.1 |
1160 | Pinocarvone | tr | 0.1 | ||
1167 | α-Phellandrene epoxide | tr | tr | ||
1170 | Borneol | 0.1 | 0.3 | 0.1 | 0.4 |
1180 | Terpinen-4-ol | 11.6 | 18.5 | 5.3 | 6.9 |
1182 | Thuj-3-en-10-al | tr | |||
1183 | p-Methylacetophenone | tr | tr | ||
1185 | p-Cymen-8-ol | 0.1 | 0.4 | 0.2 | 0.2 |
1190 | Myrtenol | tr | tr | tr | |
1193 | α-Terpineol | 1.3 | 2.6 | 0.7 | 0.9 |
1195 | cis-Piperitol | 0.2 | 0.2 | 0.1 | |
1204 | Decanal | 0.6 | |||
1206 | Verbenone | 0.1 | |||
1207 | trans-Piperitol | 0.3 | 0.6 | 0.1 | 0.1 |
1216 | endo-Fenchyl acetate | tr | tr | ||
1217 | trans-Carveol | tr | |||
1223 | Nerol | tr | |||
1241 | Cuminaldehyde | 0.1 | |||
1248 | Linalyl acetate | tr | 4.4 | ||
1255 | Methyl citronellate | 0.1 | 0.1 | 0.1 | |
1270 | 1-Decanol | tr | |||
1278 | cis-Linalool oxide acetate (pyranoid) | tr | 0.1 | tr | |
1282 | Bornyl acetate | 2.9 | 4.4 | 0.4 | 3.3 |
1285 | Isobornyl acetate | tr | 0.1 | tr | 0.1 |
1287 | Thymol | tr | 0.1 | ||
1291 | p-Menth-1-en-9-ol | tr | |||
1294 | Terpinen-4-ol acetate | tr | 0.1 | ||
1295 | Carvacrol | 0.1 | 0.3 | tr | |
1300 | Tridecene | tr | |||
1317 | p-Mentha-1,4,-dien-7-ol | 0.1 | |||
1321 | p-Menth-8-en-1,7-diol | 0.1 | |||
1321 | Methyl decanoate | 0.1 | 0.1 | tr | |
1339 | p-Cymene-8-ol acetate | 0.1 | |||
1345 | α-Terpinyl acetate | 0.1 | |||
1349 | Eugenol | tr | |||
1356 | Neryl acetate | tr | 0.1 | ||
1360 | Decanoic acid | tr | |||
1367 | α-Ylangene | 0.2 | |||
1374 | α-Copaene | tr | |||
1376 | Geranyl acetate | 0.1 | |||
1381 | α-Bourbonene | 0.1 | |||
1397 | Methyleugenol | 0.1 | 0.1 | ||
1407 | Dodecanal | 0.1 | |||
1417 | (E)-Caryophyllene | 0.1 | 1.9 | 0.1 | tr |
1439 | 6,9-Guaiadiene | 0.1 | |||
1447 | trans-Muurola-3,5-diene | 0.2 | |||
1453 | α-Humulene | tr | 0.1 | tr | |
1457 | Alloaromadendrene | 0.1 | tr | ||
1476 | γ-Curcumene | 0.1 | |||
1479 | Germacrene D | 0.1 | 1.2 | 0.2 | 0.1 |
1489 | Viridiflorene | tr | 0.1 | ||
1493 | Bicyclogermacrene | tr | 0.1 | ||
1496 | α-Muurolene | 0.1 | 0.1 | tr | |
1500 | epi-Zonarene | tr | 0.1 | ||
1502 | (E,E)-α-Farnesene | 0.1 | tr | ||
1505 | β-Bisabolene | tr | 0.1 | 0.1 | |
1511 | γ-Cadinene | tr | 0.4 | tr | |
1516 | δ-Cadinene | 0.1 | 0.3 | 0.3 | tr |
1526 | α-Panasinsen | 0.1 | |||
1559 | (E)-Nerolidol | 0.2 | |||
1569 | (3E)-Hex-3-enyl benzoate | 0.1 | |||
1574 | Spathulenol | 0.9 | 0.3 | ||
1580 | Caryophyllene oxide | 0.5 | tr | tr | |
1583 | Globulol | 0.2 | |||
1592 | Viridiflorol | tr | |||
1613 | 1,10-di-epi-Cubenol | 0.2 | 2.6 | tr | |
1630 | iso-Spathulenol | 0.1 | |||
1637 | Alloaromadendrene epoxide | 0.2 | 0.1 | ||
1640 | α-Muurolol (Torreyol) | tr | 0.2 | 0.1 | |
1642 | τ-Muurolol | 0.1 | 0.2 | ||
1644 | δ-Cadinol | 0.1 | 0.1 | ||
1653 | α-Cadinol | tr | 0.4 | 0.8 | |
1657 | Eudesm-4(15),7-dien-1α-ol | 0.1 | tr | ||
1666 | β-Atlantone | tr | |||
1688 | Eudesma-4(15),7-dien-1β-ol | 0.1 | |||
1730 | Oplopanone | 0.1 | |||
1860 | Platambin | 0.1 | tr | ||
Monoterpene hydrocarbons | 80.2 | 59.0 | 88.6 | 79.4 | |
Oxygenated monoterpenoids | 18.6 | 30.0 | 8.0 | 19.5 | |
Sesquiterpene hydrocarbons | 0.5 | 4.9 | 0.7 | 0.3 | |
Oxygenated sesquiterpenoids | 0.3 | 5.7 | 1.7 | tr | |
Others | 0.3 | 0.4 | 1.0 | 0.2 | |
Total Identified | 99.9 | 100.0 | 100.0 | 99.4 |
Compounds | C. gileadensis | B. sacra [35] | B. carterii [35] | Boswellia sp. [36] | ||||
---|---|---|---|---|---|---|---|---|
Stem | Leaf | Fruit | Commercial | |||||
α-Thujene | 30:70 | 29:71 | 28:72 | 28:72 | 73.5:26.5 | 3.8:96.2 | 43:57 | 36:64 |
α-Pinene | 25:75 | 28:72 | 29:71 | 28:72 | 89.2:10.8 | 40.5:59.5 | 83:17 | 76:34 |
Sabinene | 8:92 | 8:92 | 8:92 | 7:93 | 87.5:12.5 | 14.5:85.5 | 93:7 | 98:2 |
β-Pinene | 3.5:96.5 | 3:97 | 3.7:96.3 | 3:97 | 75.2:24.8 | 40.8:59.2 | ||
Limonene | 33:67 | 32:68 | 32:68 | 31.6:68.4 | 21.3:78.7 | 27.0:73.0 | 73:27 | 65:35 |
Linalool | 59:41 | 59:41 | 60:40 | |||||
Borneol | 0:100 | 0:100 | 0:100 | 0.1:99.9 | ||||
Terpinen-4-ol | 30:70 | 31:69 | 30:70 | 30:70 | 81:19 | 71:29 | ||
α-Terpineol | 30:70 | 32:68 | 30:70 | 31:69 | ||||
Linalyl acetate | 99:1 | |||||||
Bornyl acetate | 0:100 | 0:100 | 0:100 | 0:100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudai, N.; Shachter, A.; Satyal, P.; Setzer, W.N. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines 2017, 4, 66. https://doi.org/10.3390/medicines4030066
Dudai N, Shachter A, Satyal P, Setzer WN. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines. 2017; 4(3):66. https://doi.org/10.3390/medicines4030066
Chicago/Turabian StyleDudai, Nativ, Alona Shachter, Prabodh Satyal, and William N. Setzer. 2017. "Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis)" Medicines 4, no. 3: 66. https://doi.org/10.3390/medicines4030066
APA StyleDudai, N., Shachter, A., Satyal, P., & Setzer, W. N. (2017). Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines, 4(3), 66. https://doi.org/10.3390/medicines4030066