Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-Selective Cytotoxicity and Structure-Activity Relationships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses of Compounds
2.2. Cytotoxicity Assays
2.3. Activation of Caspases-3 and -7
2.4. PARP1 Cleavage and Activation of Bim, Bax, Puma, and Bak
2.5. Cell Cycle Analysis
2.6. Mitochondrial Membrane Potential Determination
2.7. Reactive Oxygen Species Determination
2.8. Quantitative Structure-Activity Relationships
3. Results
4. Discussion
- (1)
- A statistically significant positive relationship between the CC50 figures of 2a–g and the sigma (σ) values was obtained in a little over half of the observations made. This result reveals that the electronic properties of the aryl substituents play a significant albeit minor role in determining the magnitude of the CC50 values. The correlation is positive, revealing that the CC50 values rise (potency diminishes) as the sigma (σ) values increase in magnitude;
- (2)
- The data in Table S1 reveal clearly the positive correlation between the CC50 values and the π constants. Thus, potency increases as the hydrophilicity of the molecules falls;
- (3)
- There is no correlation between the CC50 values of 2a–g and the MR values of the aryl substituents;
- (4)
- The results in Table S2 for 3a–g reveal a similar pattern as displayed by 2a–g. There is a statistically significant positive correlation between the sigma (σ) values and the CC50 data in half of the determinations. The importance of the π values, but not the MR constants, in controlling potencies is clearly demonstrated. Thus, in planning the expansion in this series of compounds, groups should be placed in the aryl rings, which are either electron-donating, hydrophilic, or have both of these properties. Examples of such substituents are the 4-hydroxy, 4-amino, and 4-methoxy substituents with sigma (σ) values of −0.37, −0.66, and −0.27, respectively ([12], p. 49). Regarding the hydrophilic groups, the cyano, carboxylic acid, and methylsulfonyloxy have π values of −0.57, −0.32, and −0.88, respectively ([12], p. 49).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roayapalley, P.K.; Dimmock, J.R.; Contreras, L.; Balderrama, K.S.; Aguilera, R.J.; Sakagami, H.; Amano, S.; Sharma, R.K.; Das, U. Design, synthesis and tumour-selective toxicity of novel 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 2021, 26, 7132. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, H.; Iranpoor, N.; Jafari, A.A. Micellar solution of sodium dodecyl sulfate (SDS) catalyzes facile Michael addition of amines and thiols to α,β-unsaturated ketones in water under neutral conditions. Adv. Synth. Catal. 2005, 147, 655–661. [Google Scholar] [CrossRef]
- Sauerland, M.; Mertes, R.; Morozzi, C.; Eggler, A.L.; Gamon, L.F.; Davies, M.J. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic. Biol. Med. 2021, 169, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Movassagh, B.; Shaygan, P. Michael addition of thiols to α,β-unsaturated carbonyl compounds under solvent-free conditions. Arkivoc 2006, xii, 130–137. [Google Scholar] [CrossRef]
- Chen, G.; Waxman, D.J. Role of cellular glutathione and glutathione S-transferase in the expression of alkylating agent cytotoxicity in human breast cancer cells. Biochem. Pharmacol. 1994, 47, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Komuro, C.; Ono, K.; Nishidai, T.; Shibamoto, Y.; Takahashi, M.; Abe, M. Chemosensitization by buthionine sulfoximine in vivo. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, U.; Varela-Ramirez, A.; Lema, C.; Aguilera, R.J.; Balzarini, J.; De Clercq, E.; Dimmock, S.G.; Gorecki, D.K.J.; Dimmock, J.R. Bis[3,5-bis(benzylidene)-4-oxo-1-piperidinyl]amides: A novel class of potent cytotoxins. ChemMedChem. 2011, 6, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- Koroth, J.; Nirgude, S.; Tiwari, S.; Gopalakrishnan, V.; Mahadeva, R.; Kumar, S.; Karki, S.S.; Choudhary, B. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement. Altern. Med. 2019, 19, 273. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Vazquez, Y.; Das, S.; Das, U.; Robles-Escajeda, E.; Ortega, N.M.; Lema, C.; Varela-Ramirez, A.; Aguilera, R.J.; Balzarini, J.; De Clercq, E.; et al. Novel 3,5-bis(arylidene)-4-oxo-1-piperidinyl dimers: Structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity. Eur. J. Med. Chem. 2014, 77, 315–322. [Google Scholar] [CrossRef] [PubMed]
- DiLisa, F.; Blank, P.S.; Colonna, R.; Gambassi, G.; Silverman, H.S.; Stern, H.S.; Hansford, R.G. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J. Physiol. 1995, 486, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Leo, A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley and Sons: New York, NY, USA, 1979; pp. 49–50. [Google Scholar]
- SPSS Inc. Statistical Package for Social Sciences, SPSS for Windows, Release 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Shishodia, S.; Chaturvedi, M.M.; Agarwal, B.B. Role of curcumin in cancer therapy. Curr. Probl. Cancer. 2007, 31, 243–305. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Lahbib, K.; Aouani, I.; Abdelmelek, H.; Touil, S. Synthesis, hematological, biochemical, and neurotoxicity screening of some mannich base hydrochlorides. Toxicol. Int. 2013, 20, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.E.; Hochegger, H.; Takeda, S.; Caldecott, K.W. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol. 2007, 27, 5597–5605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Martinvalet, D.; Chowdhury, D.; Zhang, D.; Schlesinger, A.; Lieberman, J. The cytotoxic T lymphocyte protease granzyme A cleaves and inactivates poly(adenosine 5′-diphosphate-ribose) polymerase-1. Blood 2009, 114, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.D.; Sørensen, C.S. The caspase-activated DNase: Apoptosis and beyond. FEBS J. 2017, 284, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Garza, K.M.; Soto, K.F.; Murr, L.E. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int. J. Nanomed. 2008, 3, 83–94. [Google Scholar]
Compound | Human Tumour Cell Lines, CC50 (μM) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HL-60 | SI b | HSC-2 | SI b | HSC-3 | SI b | HSC-4 | SI b | AVE. CC50 | AVE SI b | |
2a | 0.11 ± 0.009 | 29.6 | 0.085 ± 0.013 | 38.4 | 0.15 ± 0.022 | 21.7 | 0.20 ± 0.011 | 16.3 | 0.14 | 26.5 |
2b | 0.037 ± 0.017 | 40.5 | 0.037 ± 0.009 | 40.5 | 0.066 ± 0.008 | 22.7 | 0.033 ± 0.009 | 45.5 | 0.04 | 37.3 |
2c | 4.4 ± 0.17 | 16.9 | 3.7 ± 0.60 | 20.1 | 11 ± 1.1 | 6.76 | 6.7 ± 3.0 | 11.1 | 6.45 | 13.7 |
2d | 8.4 ± 0.017 | 4.08 | 5.9 ± 0.12 | 5.81 | 8.4 ± 0.87 | 4.08 | 6.4 ± 0.15 | 5.36 | 7.28 | 4.83 |
2e | 2.7 ± 0.78 | 16.7 | 1.8 ± 0.25 | 25.0 | 4.3 ± 1.1 | 10.5 | 2.3 ± 0.25 | 19.6 | 2.78 | 18.0 |
2f | 0.19 ± 0.026 | 65.8 | 0.42 ± 0.025 | 29.8 | 0.23 ± 0.097 | 54.4 | 0.16 ± 0.024 | 78.1 | 0.25 | 57.0 |
2g | 0.037 ± 0.002 | 15.4 | 0.063 ± 0.009 | 9.05 | 0.035 ± 0.006 | 16.3 | 0.088 ± 0.029 | 6.48 | 0.06 | 11.8 |
2h | 15 ± 0.42 | >5.45 | 7.8 ± 1.3 | >10.5 | 9.2 ± 4.7 | >8.88 | 9.6 ± 0.17 | >8.51 | 10.4 | >8.34 |
2i | >100 | ~1.00 | >100 | ~1.00 | >100 | ~1.00 | >100 | ~1.00 | >100 | ~1.00 |
3a | 0.046 ± 0.009 | 20.0 | 0.050 ± 0.001 | 18.4 | 0.046 ± 0.026 | 20.0 | 0.084 ± 0.005 | 11.0 | 0.06 | 17.4 |
3b | 0.028 ± 0.001 | 151 | 0.041 ± 0.004 | 103 | 0.046 ± 0.011 | 92.0 | 0.023 ± 0.003 | 184 | 0.04 | 133 |
3c | 5.0 ± 0.76 | 8.26 | 5.5 ± 0.65 | 7.51 | 13 ± 2.2 | 3.18 | 5.5 ± 0.96 | 7.51 | 7.25 | 6.62 |
3d | 65 ± 6.1 | >1.54 | 73 ± 3.5 | >1.37 | 76 ± 13 | >1.32 | 79 ± 5.5 | >1.27 | 73.3 | >1.38 |
3e | 1.4 ± 0.15 | 17.6 | 1.6 ± 0.39 | 15.4 | 2.2 ± 0.20 | 11.2 | 1.9 ± 0.15 | 13.0 | 1.78 | 14.3 |
3f | 0.26 ± 0.021 | 5.77 | 0.34 ± 0.076 | 4.41 | 0.20 ± 0.14 | 7.50 | 0.128 ± 0.014 | 11.7 | 0.23 | 7.35 |
3g | 0.030 ± 0.0002 | 6.33 | 0.065 ± 0.016 | 2.92 | 0.035 ± 0.005 | 5.43 | 0.038 ± 0.009 | 5.00 | 0.04 | 4.92 |
4 | 0.18 ± 0.011 | 22.2 | 0.21 ± 0.032 | 19.1 | 0.35 ± 0.11 | 11.4 | 0.083 ± 0.021 | 48.2 | 0.21 | 25.2 |
Melphalan | 0.89 ± 0.17 | 75.6 | 12 ± 2.7 | 5.61 | 46 ± 31 | 1.46 | 46 ± 6.0 | 1.46 | 26.2 | 21.0 |
Curcumin | 7.8 ± 0.58 | 5.81 | 10 ± 0.81 | 4.53 | 16 ± 2.7 | 2.83 | 14 ± 3.2 | 3.24 | 12.0 | 4.10 |
Compound | Human Normal Cells, CC50 (μM) a | PSE b | |||
---|---|---|---|---|---|
HGF | HPC | HPLF | AVE CC50 | ||
2a | 3.8 ± 0.52 | 0.68 ± 0.073 | 5.3 ± 0.50 | 3.26 | 189 |
2b | 1.2 ± 0.10 | 1.4 ± 0.11 | 1.9 ± 0.36 | 1.50 | 933 |
2c | 56 ± 6.7 | 78 ± 37 | 89 ± 9.3 | 74.3 | 2.12 |
2d | 36 ± 3.1 | 23 ± 3.1 | 44 ± 3.2 | 34.3 | 0.66 |
2e | 45 ± 4.6 | 23 ± 1.2 | 67 ± 4.5 | 45.0 | 6.48 |
2f | 24 ± 1.1 | 2.4 ± 0.7 | 11 ± 0.98 | 12.5 | 228 |
2g | 0.47 ± 0.14 | 0.28 ± 0.07 | 0.95 ± 0.012 | 0.57 | 197 |
2h | 82 ± 14 | 63 ± 8 | >100 | >81.7 | >0.80 |
2i | >100 | >100 | >100 | >100 | ~1.00 |
3a | 1.1 ± 0.01 | 0.36 ± 0.10 | 1.3 ± 0.33 | 0.92 | 290 |
3b | 3.8 ± 0.71 | 3.2 ± 1.1 | 5.7 ± 0.67 | 4.23 | 3325 |
3c | 41 ± 2.5 | 38 ± 8.7 | 45 ± 11 | 41.3 | 0.91 |
3d | >100 | >100 | >100 | >100 | >0.02 |
3e | 20 ± 1.3 | 19 ± 2.7 | 35 ± 4.2 | 24.7 | 8.03 |
3f | 1.1 ± 0.084 | 1.6 ± 0.078 | 1.8 ± 0.050 | 1.50 | 32.0 |
3g | 0.093 ± 0.020 | 0.18 ± 0.030 | 0.30 ± 0.047 | 0.19 | 123 |
4 | 3.0 ± 0.21 | 3.7 ± 2.0 | 5.3 ± 0.61 | 4.00 | 120 |
Melphalan | 73 ± 15 | 37 ± 7.3 | 92 ± 7.8 | 67.3 | 0.80 |
Curcumin | 70 ± 12 | 34 ± 6.8 | 32 ± 6.4 | 45.3 | 0.34 |
Compound | MW a | LogP a (WLOGP) | H-Bond Acceptors | H-Bond Donors | Rotatable Bonds | TPSA a | Violations |
---|---|---|---|---|---|---|---|
2a | 604.69 | 4.95 | 4 | 0 | 7 | 74.76 | 2 |
2b | 676.65 | 7.18 | 8 | 0 | 7 | 74.76 | 3 |
2f | 844.90 | 5.02 | 12 | 0 | 15 | 148.6 | 5 |
2g | 965.00 | 5.05 | 16 | 0 | 19 | 185.52 | 4 |
3a | 618.72 | 5.34 | 4 | 0 | 8 | 74.76 | 3 |
3b | 690.68 | 7.57 | 8 | 0 | 8 | 74.76 | 3 |
3f | 858.93 | 5.41 | 12 | 0 | 16 | 148.6 | 5 |
3g | 979.03 | 5.44 | 16 | 0 | 20 | 185.52 | 5 |
4 | 590.75 | 6.28 | 4 | 0 | 8 | 40.62 | 2 |
Ideal compound | <500 | <5.00 | <10 | <5 | <10 | <140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Roayapalley, P.K.; Sakagami, H.; Umemura, N.; Gorecki, D.K.J.; Hossain, M.; Kawase, M.; Das, U.; Dimmock, J.R. Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-Selective Cytotoxicity and Structure-Activity Relationships. Medicines 2024, 11, 3. https://doi.org/10.3390/medicines11010003
Das S, Roayapalley PK, Sakagami H, Umemura N, Gorecki DKJ, Hossain M, Kawase M, Das U, Dimmock JR. Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-Selective Cytotoxicity and Structure-Activity Relationships. Medicines. 2024; 11(1):3. https://doi.org/10.3390/medicines11010003
Chicago/Turabian StyleDas, Swagatika, Praveen K. Roayapalley, Hiroshi Sakagami, Naoki Umemura, Dennis K. J. Gorecki, Mohammad Hossain, Masami Kawase, Umashankar Das, and Jonathan R. Dimmock. 2024. "Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-Selective Cytotoxicity and Structure-Activity Relationships" Medicines 11, no. 1: 3. https://doi.org/10.3390/medicines11010003
APA StyleDas, S., Roayapalley, P. K., Sakagami, H., Umemura, N., Gorecki, D. K. J., Hossain, M., Kawase, M., Das, U., & Dimmock, J. R. (2024). Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-Selective Cytotoxicity and Structure-Activity Relationships. Medicines, 11(1), 3. https://doi.org/10.3390/medicines11010003