Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers
Abstract
:1. Introduction
- -
- traffic congestion: delivery vehicles make up between 5% and 10% of the total flow of vehicles in city centers. However, when parked outside designated delivery points, they obstruct roads and contribute to congestion;
- -
- reduction of air quality: almost all delivery vehicles have a diesel engine which results in the emission of harmful gases that directly affect human health;
- -
- greenhouse gas emissions: delivery vehicles are a significant greenhouse gas generator; although this may be of less interest to city authorities, this issue must be addressed by the European Union directives;
- -
- noise: sleep disturbance of residents, especially in early morning and evening deliveries;
- -
- reduced safety: city authorities consider delivery vehicles to be dangerous for both pedestrians and cyclists because of their size, especially near buildings in the city center where streets are too narrow.
2. Research Methodology
- -
- step 1; identify stakeholders,
- -
- step 2; define criteria for evaluation,
- -
- step 3; conduct a survey questionnaire,
- -
- step 4; set guidelines for improving delivery activities.
3. Application of Research Methodology
3.1. Stakeholder Groups
3.1.1. Urban Policy Makers
3.1.2. Carriers
3.1.3. Delivery Recipients
3.1.4. Residents
3.2. Evaluation Criteria
3.2.1. Technical-Technological Criteria
3.2.2. Economic-Financial Criteria
3.2.3. Organizational Criteria
3.2.4. Social Criteria
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, F.; Comi, A. From City Logistics Theories to City Logistics Planning. In City Logistics 3: Towards Sustainable and Liveable Cities; Wiley: Hoboken, NJ, USA, 2018; pp. 329–347. [Google Scholar] [CrossRef]
- Kolarić, G.; Skorić, L. Methods of Distribution in the City Centre. Teh. Glas. 2014, 4, 405–412. [Google Scholar]
- Quak, H.; Kok, R.; den Boer, E. The Future of City Logistics—Trends and Developments Leading toward a Smart and Zero-Emission System. In City Logistics 1: New Opportunities and Challenges; Wiley: Hoboken, NJ, USA, 2018; pp. 125–146. [Google Scholar] [CrossRef]
- Wątróbski, J.; Małecki, K.; Kijewska, K.; Iwan, S.; Karczmarczyk, A.; Thompson, R.G. Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability 2017, 9, 1453. [Google Scholar] [CrossRef] [Green Version]
- Ward, E.J.; Dimitriou, H.T.; Dean, M. Theory and background of multi-criteria analysis: Toward a policy-led approach to mega transport infrastructure project appraisal. Res. Transp. Econ. 2016, 58, 21–45. [Google Scholar] [CrossRef]
- Schliwa, G.; Armitage, R.; Aziz, S.; Evans, J.; Rhoades, J. Sustainable city logistics—Making cargo cycles viable for urban freight transport. Res. Transp. Bus. Manag. 2015, 15, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Moufad, I.; Jawab, F. Multi-criteria analysis of urban public transport problems: The city of Fes as a Case. Int. J. Sci. Eng. Res. 2017, 8, 675–681, ISSN 2229-5518. [Google Scholar]
- Rose, J.M.; Martínez, F.J.; Hensher, D.A.; Button, K.J. Towards a Land-Use and Transport Interaction Framework. In Handbook of Transport Modelling; Emerald Group Publishing Limited: Bingley, UK, 2007; pp. 181–201. [Google Scholar]
- Paidi, V.; Nyberg, R.; Håkansson, J. Dynamic Scheduling and Communication System to Manage Last Mile Handovers. Logistics 2020, 4, 13. [Google Scholar] [CrossRef]
- Muñoz-Villamizar, A.; Solano-Charris, E.; Reyes-Rubiano, L.; Faulin, J. Measuring Disruptions in Last-Mile Delivery Operations. Logistics 2021, 5, 17. [Google Scholar] [CrossRef]
- Mendoza, G.; Macoun, P. Guidelines for Applying Multi-Criteria Analysis to the Assessment of Criteria and Indicators; Center for International Foresty Research (CIFOR): Bogor, Indonesia, 1999. [Google Scholar]
- Taniguchi, E.; Thompson, R.G. City Logistics 2: Modeling and Planning Initiatives; Wiley: Hoboken, NJ, USA, 2018; p. 402. [Google Scholar]
- Anand, N.; Quak, H.; van Duin, R.; Tavasszy, L. City Logistics Modeling Efforts: Trends and Gaps—A Review. Procedia Soc. Behav. Sci. 2012, 39, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Tamagawa, D.; Taniguchi, E.; Yamada, T. Evaluating city logistics measures using a multi-agent model. Procedia Soc. Behav. Sci. 2010, 2, 6002–6012. [Google Scholar] [CrossRef] [Green Version]
- Köster, F.; Ulmer, M.W.; Mattfeld, D. Cooperative Traffic Control Management for City Logistic Routing. Transp. Res. Procedia 2015, 10, 673–682. [Google Scholar] [CrossRef] [Green Version]
- González-Feliu, J. Sustainable Urban Logistics—Planning and Evaluation; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Neghabadi, P.D.; Samuel, K.E.; Espinouse, M. City Logistics: A Review and Research Framework. 2016. Available online: https://hal.archives-ouvertes.fr/hal-01420815/document (accessed on 28 June 2021).
- Morfoulaki, M.; Kotoula, K.; Stathacopoulos, A.; Mikiki, F.; Aifadopoulou, G. Evaluation of Specific Policy Measures to Promote Sustainable Urban Logistics in Small-medium Sized Cities: The Case of Serres, Greece. Transp. Res. Procedia 2016, 12, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Munda, G. Multiple criteria decision analysis and sustainable development. Int. Ser. Oper. Res. Manag. Sci. 2016, 233, 1235–1267. [Google Scholar] [CrossRef]
- Berbel, J.; Bournaris, T.; Manos, B.; Matsatsinis, N.; Viaggi, D. Multicriteria Analysis in Agriculture; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Deluka-Tibljaš, A.; Karleuša, B.; Dragičevič, N. Pregled primjene metoda višekriterijske analize pri donošenju odluka o prometnoj infrastrukturi. Gradjevinar 2013, 65, 619–631. [Google Scholar]
- Jæger, B.; Menebo, M.M.; Upadhyay, A. Identification of environmental supply chain bottlenecks: A case study of the Ethiopian healthcare supply chain. Manag. Environ. Qual. Int. J. 2021. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Tijan, E.; Aksentijević, S.; Ivanić, K.; Jardas, M. Blockchain Technology Implementation in Logistics. Sustainability 2019, 11, 1185. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Ayodele, J.O.; Kumar, A.; Garza-Reyes, J.A. A review of challenges and opportunities of blockchain adoption for operational excellence in the UK automotive industry. J. Glob. Oper. Strat. Sourc. 2021, 14, 7–60. [Google Scholar] [CrossRef]
- Pearman, A.D.; Phillips, L.D. A Manual Multi-Criteria Analysis; Department for Communities and Local Government: London, UK, 2009. [Google Scholar]
- Nikolić, I.; Borović, S. Višekriterijumska Optimizacija—Metode, Primjena i Softver; Centar vojnih škola Vojske Jugoslavije: Beograd, Serbia, 1996. [Google Scholar]
- Hadžić, A.P.; Jugović, A.; Perić, M. Criteria for the management partnership model in Croatian seaports. Econ. Res. Ekon. Istraž. 2015, 28, 226–242. [Google Scholar] [CrossRef]
- Van Lier, T.; Van Raemdonck, K.; Hadavi, S.; Macharis, C. Conceptual Framework for Participatory Evaluation: MAMCA. Available online: https://www.civic-project.eu/sites/default/files/content/civic_deliverable_d1_1_participatory_mamca_vub_final.pdf (accessed on 28 June 2021).
- Dell’Amico, M.; DeLoof, W.; Hadjidimitriou, S.; Vernet, G.; Schoenewolf, W. CityLog Sustainability and efficiency of city logistics: The M-BBX (Modular BentoBox System). IEEE Forum Integr. Sustain. Transp. Syst. 2011, 132–135. [Google Scholar] [CrossRef]
- CIVITAS. Making urban freight logistics more sustainable. Civ. Policy Note 2015, 1–63. Available online: http://www.eltis.org/resources/tools/civitas-policy-note-making-urban-freight-logistics-more-sustainable (accessed on 28 June 2021).
- Morandi, C.; Rolando, A.; Di Vita, S. From Smart City to Smart Region: Digital Services for an Internet of Places; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Cattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. Vehicle routing problems for city logistics. EURO J. Transp. Logist. 2017, 6, 51–79. [Google Scholar] [CrossRef]
- Ramon-Jeronimo, J.M.; Florez-Lopez, R.; Ramon-Jeronimo, M.A. Understanding the Generation of Value along Supply Chains: Balancing Control Information and Relational Governance Mechanisms in Downstream and Upstream Relationships. Sustainability 2017, 9, 1487. [Google Scholar] [CrossRef] [Green Version]
- Garrabou, G.; Morén, C.; Gallego-Escuredo, J.M.; Milinkovic, A.; Villarroya, F.; Negredo, E.; Giralt, M.; Vidal, F.; Pedrol, E.; Martínez, E.; et al. Genetic and Functional Mitochondrial Assessment of HIV-Infected Patients Developing HAART-Related Hyperlactatemia. J. Acquir. Immune Defic. Syndr. 2009, 52, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Dell’Amico, M.; Hadjidimitriou, S. Innovative Logistics Model and Containers Solution for Efficient Last Mile Delivery. Procedia Soc. Behav. Sci. 2012, 48, 1505–1514. [Google Scholar] [CrossRef] [Green Version]
- Galic, A.; Carić, T.; Fosin, J. The Case Study of Implementing the Delivery Optimization System at a Fast-Moving Consumer Goods Distributer. Promet Traffic Transp. 2013, 25, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Visser, J.; Nemoto, T.; Browne, M. Home Delivery and the Impacts on Urban Freight Transport: A Review. Procedia Soc. Behav. Sci. 2014, 125, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Crainic, T.G.; Nguyen, P.K.; Toulouse, M. Synchronized Multi-trip Multi-traffic Pickup & Delivery in City Logistics. Transp. Res. Procedia 2016, 12, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Malindretos, G.; Bakogianni, M.; Mavrommati, S. City Logistics Models in the Framework of Smart Cities: Urban City Logistics Models in the Framework of Smart Cities: Urban Freight Consolidation. Available online: https://www.researchgate.net/publication/328784050_CITY_LOGISTICS_MODELS_IN_THE_FRAMEWORK_OF_SMART_CITIES_URBAN_FREIGHT_CONSOLIDATION_CENTERS/stats (accessed on 28 June 2021).
- Deng, Q.; Fang, X. Urban Consolidation Center or Peer-to-Peer Platform? The Solution to Urban Last-Mile Delivery; Wiley: Hoboken, NJ, USA, 2019; pp. 1–39. [Google Scholar]
- Cardenas, I.; Borbon-Galvez, Y.; Verlinden, T.; Van De Voorde, E.; Vanelslander, T.; Dewulf, W. City logistics, urban goods distribution and last mile delivery and collection. Compet. Regul. Netw. Ind. 2017, 18, 22–43. [Google Scholar] [CrossRef]
- Cinar, D.; Gakis, K.; Pardalos, P.M. Sustainable operations: Transportation and logistics. Zeolites 2017, 29. [Google Scholar] [CrossRef]
- Quak, H.; Nesterova, N.; van Rooijen, T. Possibilities and Barriers for Using Electric-powered Vehicles in City Logistics Practice. Transp. Res. Procedia 2016, 12, 157–169. [Google Scholar] [CrossRef] [Green Version]
- McAlexander, T.P.; Gershon, R.R.; Neitzel, R.L. Street-level noise in an urban setting: Assessment and contribution to personal exposure. Environ. Health 2015, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Ostendorf, B.; Retallack, A.E. Current Understanding of the Effects of Congestion on Traffic Accidents. Int. J. Environ. Res. Public Health 2019, 16, 3400. [Google Scholar]
- Ehmke, J.F.; Mattfeld, D.C. Vehicle Routing for Attended Home Delivery in City Logistics. Procedia Soc. Behav. Sci. 2012, 39, 622–632. [Google Scholar] [CrossRef] [Green Version]
CRITERIA | DELIVERY RECIPIENTS | URBAN POLICY MAKERS | RESIDENTS | CARRIERS | |||||
---|---|---|---|---|---|---|---|---|---|
TECHNICAL-TECHNOLOGICAL CRITERION | Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | |
T1 | The use of existing/new technologies | 3.19 | 1.36 | 2.86 | 1.36 | 2.84 | 1.35 | 2.87 | 1.34 |
T2 | Condition and quality of infrastructure | 3.2 | 1.16 | 2.89 | 1.16 | 2.92 | 1.19 | 2.88 | 1.18 |
T3 | Traffic congestion | 3.27 | 1.43 | 2.67 | 1.41 | 2.75 | 1.45 | 2.66 | 1.39 |
T4 | Unloading/loading equipment | 3.18 | 1.21 | 2.92 | 1.13 | 2.96 | 1.17 | 2.93 | 1.11 |
ECONOMIC-FINANCIAL CRITERION | |||||||||
E1 | Transport infra and superstructure maintenance cost | 3.2 | 1.03 | 2.73 | 1.02 | 2.77 | 1.04 | 2.73 | 1.02 |
E2 | Transport time to delivery point | 2.88 | 1.02 | 2.65 | 1.03 | 2.66 | 1.02 | 2.65 | 1.03 |
E3 | Transport time from delivery point to the delivery recipient | 2.87 | 1.13 | 2.7 | 0.94 | 2.7 | 0.94 | 2.72 | 0.93 |
E4 | Investments in new technological solutions | 3.08 | 1.19 | 2.63 | 1.23 | 2.64 | 1.23 | 2.63 | 1.21 |
E5 | Shipping cost | 2.98 | 1.02 | 2.75 | 0.98 | 2.77 | 0.96 | 2.75 | 1.02 |
SOCIAL CRITERIA | |||||||||
S1 | Delivery recipient’s satisfaction | 2.48 | 1.12 | 2.65 | 1.05 | 2.57 | 1.07 | 2.62 | 1.06 |
S2 | Greenhouse gas emissions | 3.07 | 1.2 | 2.98 | 1.26 | 2.97 | 1.23 | 2.94 | 1.25 |
S3 | Noise level | 3.01 | 1.11 | 2.93 | 1.1 | 2.92 | 1.08 | 2.91 | 1.09 |
S4 | Consequences of traffic accidents | 3.09 | 1.21 | 2.95 | 1.2 | 2.93 | 1.2 | 2.94 | 1.22 |
S5 | Safety | 2.84 | 1.22 | 2.55 | 1.09 | 2.54 | 1.08 | 2.54 | 1.08 |
S6 | Carrier satisfaction | 2.64 | 1.14 | 2.64 | 1.05 | 2.57 | 1.05 | 2.63 | 1.05 |
ORGANIZATIONAL CRITERIA | |||||||||
O1 | Possibility of access to delivery point | 3.13 | 1.36 | 2.89 | 1.22 | 2.84 | 1.27 | 2.85 | 1.18 |
O2 | Distance from delivery point to the delivery recipient | 3 | 1.22 | 2.85 | 1.02 | 2.84 | 1.05 | 2.85 | 1.04 |
O3 | Customer coverage | 3.1 | 1.38 | 2.83 | 1.18 | 2.84 | 1.21 | 2.8 | 1.14 |
Criteria | Average Rating | Standard Deviation | |
---|---|---|---|
T2 | Condition and quality of infrastructure | 3.07 | 1.18 |
T4 | Unloading/loading equipment | 3.05 | 1.17 |
T1 | The use of existing/new technologies | 3.03 | 1.34 |
S2 | Greenhouse gas emissions | 3.03 | 1.21 |
S4 | Consequences of traffic accidents | 3.02 | 1.20 |
O1 | Possibility of access to delivery point | 3.00 | 1.27 |
E1 | Transport infra and superstructure maintenance cost | 2.99 | 1.06 |
T3 | Traffic congestion | 2.99 | 1.45 |
S3 | Noise level | 2.96 | 1.11 |
O3 | Customer coverage | 2.96 | 1.25 |
O2 | Distance from delivery point to the delivery recipient | 2.92 | 1.15 |
E5 | Shipping cost | 2.90 | 1.01 |
E4 | Investments in new technological solutions | 2.87 | 1.22 |
E3 | Transport time from delivery point to the delivery recipient | 2.79 | 1.04 |
E2 | Transport time to delivery point | 2.77 | 1.05 |
S5 | Safety | 2.70 | 1.16 |
S6 | Carrier satisfaction | 2.64 | 1.09 |
S1 | Delivery recipients’ satisfaction | 2.56 | 1.08 |
Stakeholder Groups | Count | Sum | Average | Variance | |
---|---|---|---|---|---|
DELIVERY RECIPIENTS | 18 | 54.21 | 3.01 | 0.04 | |
URBAN POLICY MAKERS | 18 | 50.08 | 2.78 | 0.02 | |
RESIDENTS | 18 | 50.03 | 2.78 | 0.02 | |
CARRIERS | 18 | 49.90 | 2.77 | 0.02 | |
ANOVA | |||||
Source of variation | SS | df | MS | F | F crit |
Between stakeholder groups | 0.74 | 3 | 0.25 | 10.1413 | 2.739502 |
Within stakeholder groups | 1.65 | 68 | 0.02 | ||
Total | 2.38 | 71 | |||
Decision Rule: | Reject the Null Hypothesis if F Statistic > 2.7395 or p-Value < 0.05 | ||||
Conclusion: | Reject the Null Hypothesis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jardas, M.; Perić Hadžić, A.; Tijan, E. Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers. Logistics 2021, 5, 44. https://doi.org/10.3390/logistics5030044
Jardas M, Perić Hadžić A, Tijan E. Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers. Logistics. 2021; 5(3):44. https://doi.org/10.3390/logistics5030044
Chicago/Turabian StyleJardas, Mladen, Ana Perić Hadžić, and Edvard Tijan. 2021. "Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers" Logistics 5, no. 3: 44. https://doi.org/10.3390/logistics5030044
APA StyleJardas, M., Perić Hadžić, A., & Tijan, E. (2021). Defining and Measuring the Relevance of Criteria for the Evaluation of the Inflow of Goods in City Centers. Logistics, 5(3), 44. https://doi.org/10.3390/logistics5030044