Effect of Water Storage on Hardness and Interfacial Strength of Resin Composite Luting Agents Bonded to Surface-Treated Monolithic Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardness Measurements
2.2. Roughness Measurements
2.3. Bond Strength Testing
2.4. Statistical Analysis
3. Results
3.1. Hardness Measurements
3.2. Roughness Measurements
3.3. Bond Strength Testing
4. Discussion
5. Conclusions
- Hardness measurements showed that the adhesive resin composite luting agent demonstrated the earliest susceptibility to water plasticization, followed by the self-adhesive luting agent and the adhesive-free luting agent, the latter being the least affected.
- Zirconia surface roughness parameters were significantly increased after alumina particle grit-blasting and tribo-chemical silica coating treatments.
- Tribo-chemical silica coating combined with a silane coupling agent containing phosphate/disulfide monomers was the most efficient bonding treatment for the non-adhesive and the self-adhesive luting agents.
- The adhesive luting agents were the best treatments for alumina grit-blasted zirconia.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Lawn, B.R. Evaluating dental zirconia. Dent. Mater. 2019, 35, 15–23. [Google Scholar] [CrossRef]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to, Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Le, M.; Larsson, C.; Papia, E. Bond strength between MDP-based cement and translucent zirconia. Dent. Mater. J. 2019, 1, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Al Kheraif, A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent Trends in Surface Treatment Methods for Bonding Composite Cement to Zirconia: A Review. J. Adhes Dent. 2017, 19, 7–19. [Google Scholar] [PubMed]
- Blatz, M.; Phark, J.; Ozer, F.; Mante, F.; Saleh, M.; Bergler, M.; Sadan, A. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin. Oral Investig. 2010, 14, 187–192. [Google Scholar] [CrossRef]
- Quigley, N.P.; Loo, D.S.S.; Choy, C.; Ha, W.N. Clinical efficacy of methods for bonding to zirconia: A systematic review. J. Prosthet. Dent. 2021, 125, 231–240. [Google Scholar] [CrossRef]
- Keuper, M.; Berthold, C.; Nickel, K. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature. Acta Biomater. 2014, 10, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Castillo-de Oyagüe, R.; Monticelli, F.; Osorio, E.; Toledano, M. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics. Med. Oral Patol. Oral Cir. Bucal. 2012, 17, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Qian, M.; Zhang, H.; Chen, C.; Xie, H.; Tay, F.R. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: Effects of molecular structure and solvents. Dent. Mater. 2017, 33, e415–e427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tay, F.R.; Lu, Z.; Chen, C.; Qian, M.; Zhang, H.; Tian, F.; Xie, H. Dipentaerythritol penta-acrylate phosphate—An alternative phosphate ester monomer for bonding of methacrylates to zirconia. J. Oral Sci. 2018, 60, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Pilo, R.; Dimitriadi, M.; Silikas, N.; Eliades, G. Novel silane encapsulation system for tribochemical resin bonding to a Co-Cr alloy. J. Dent. 2016, 50, 60–68. [Google Scholar] [CrossRef]
- Shimoe, S.; Hirata, I.; Otaku, M.; Matsumura, H.; Kato, K.; Satoda, T. Formation of chemical bonds on zirconia surfaces with acidic functional monomers. Sci. Rep. 2016, 21, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.; Kang, L.; Liu, Y.; Lin, J.; Wang, C.; Chen, H.; Tai, C. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dent. Mater. 2017, 33, 923–933. [Google Scholar] [CrossRef]
- Xie, H.; Tay, F.; Zhang, F.; Lu, Y.; Shen, S.; Chen, C. Coupling of 10 methacryloyloxydecyl dihydrogen phosphate to tetragonal zirconia: Effect of pH reaction conditions on coordinate bonding. Dent. Mater. 2015, 31, e218–e225. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.H.; Huh, Y.H.; Ko, K.H.; Park, C.J.; Cho, L.R. Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent. J. Adv. Prosthodont. 2018, 10, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Valente, F.; Mavriqi, L.; Traini, T. Effects of 10-MDP based primer on shear bond strength between zirconia and new experimental resin cement. Materials 2020, 13, 235. [Google Scholar] [CrossRef] [Green Version]
- Matinlinna, J.; Lassila, L.; Ozcan, M.; Yli-Urpo, A.; Vallittu, P. An introduction to silanes and their clinical applications in dentistry. Int. J. Prosthodont. 2004, 17, 155–164. [Google Scholar]
- Abouselib, M.; Matinlinna, J.; Salameh, Z.; Ounsi, H. Innovations in bonding to zirconia based materials: Part, I. Dent. Mater. 2008, 24, 1268–1272. [Google Scholar] [CrossRef] [PubMed]
- Caravaca, C.; Shi, L.; Balvay, S.; Rivory, P.; Laurenceau, E.; Chevolot, Y.; Hartmann, D.; Gremillard, L.; Chevalier, J. Direct silanization of zirconia for increased biointegration. Acta Biomater. 2016, 46, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Skovgaard, M.; Almdal, K.; Van Lelieveld, A. Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification. J. Mater. Sci. 2011, 46, 1824–1829. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Pow, E.; Tsoi, J.; Matinlinna, J. Evaluation of four surface coating treatments for resin to zirconia bonding. J. Mech. Behav. Biomed. Mater. 2014, 32, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Pilo, R.; Dimitriadi, M.; Palaghia, A.; Eliades, G. Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia. Dent. Mater. 2018, 34, 306–331. [Google Scholar] [CrossRef] [PubMed]
- Manso, A.P.; Carvalho, R.M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent. Clin. N. Am. 2017, 61, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, K.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Frevert, K.; Ender, A.; Roos, M.; Sener, B.; Wimmer, T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J. Mech. Behav. Biomed. Mater. 2016, 59, e419–e424. [Google Scholar] [CrossRef] [Green Version]
- Stout, K.; Blunt, L. Three-Dimensional Surface Topography, 2nd ed.; Elsevier: London, UK, 2000; pp. 1–18. [Google Scholar]
- Faria-e-Silva, A.L.; Piva, E.; Lima, G.S.; Boaro, L.C.; Braga, R.R.; Martins, L.R. Effect of immediate and delayed light activation on the mechanical properties and degree of conversion in dual-cured resin cements. J. Oral Sci. 2012, 54, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Khoroushi, M.; Ghasemi, M.; Abedinzadeh, R.; Samimi, P. Comparison of immediate and delayed light-curing on nano-indentation creep and contraction stress of dual-cured resin cements. J. Mech. Behav. Biomed. Mater. 2016, 64, 272–280. [Google Scholar] [CrossRef]
- Yang, B.; Huang, Q.; Holmes, B.; Guo, J.; Li, Y.; Heo, Y.; Chew, H.P.; Wang, Y.; Fok, A. Influence of curing modes on the degree of conversion and mechanical parameters of dual-cured luting agents. J. Prosthodont. Res. 2020, 64, 137–144. [Google Scholar] [CrossRef]
- ISO 29022:2013. Dentistry-Adhesion-Notched-Edge Shear Bond Strength; International Organization for Standardization, ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Della Bonna, A.; Borba, M.; Benetti, P.; Cecchetti, D. Effect of surface treatment on the bond strength of a zirconia-reinforced ceramic to composite resin. Braz. Oral Res. 2007, 21, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, T.R.; Di Francescantonio, M.; Arrais, C.A.; Ambrosano, G.M.; Davanzo, C.; Giannini, M. Influence of curing mode and time on degree of conversion of one conventional and two self-adhesive resin cements. Oper. Dent. 2010, 35, 295–299. [Google Scholar] [CrossRef]
- Lührs, A.K.; De Munck, J.; Geurtsen, W.; Van Meerbeek, B. Composite cements benefit from light-curing. Dent. Mater. 2014, 30, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.; Pereira, G.; Amaral, M.; Valandro, L.; Bottino, M. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic. Braz. Oral Res. 2016, 30, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, J.; Botelho, M.; Sousa, S.; Martinelli, A.; Özcan, M. Evaluation of spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure. J. Adhes Dent. 2015, 17, 77–80. [Google Scholar]
- Jadhav, A. Self-assembled monolayers (SAMs) of carboxylic acids: An overview. Cent. Eur. J. Chem. 2011, 9, 369–378. [Google Scholar] [CrossRef]
- Yamada, K.; Koizumi, H.; Kawamoto, Y.; Ishikawa, Y.; Matsumura, H.; Tanoue, N. Effect of single-liquid priming agents on adhesive bonding to aluminum oxide of a methacrylic resin. Dent. Mater. J. 2007, 26, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria-e-Silva, A.; Rafael, R.; Moraes, R.; Fabrício, A.; Ogliari, F.; Piva, E.; Martins, L.; Panavia, F. The role of the primer. J. Oral Sci. 2009, 51, 255–259. [Google Scholar] [CrossRef] [Green Version]
Product (Lot/Code) | Composition * | Manufacturer |
---|---|---|
Multilink Automix 532906/ML Shade: Yellow | EBPDMA, BisGMA, 2-HEMA, UDMA, catalysts, F-Ba-glass, Ba-Al-F-Silicate glass, YF3 (Filler: 66%wt, 40%v, size: 0.25–3 μm) | Ivoclar Vivadent, Schaan, Liechtenstein |
Panavia F 2.0 2.000555A,00107B/PF Shade: A2 | Hydrophobic aromatic and aliphatic dimethacrylates, hydrophilic aliphatic dimethacrylate, 10-MDP, catalysts, silanated silica, Ba-glass, colloidal silica, functionalized NaF (Filler: 78%wt, 59%v, size: 0.04–19 μm) | Noritake Kuraray, Osaka, Japan |
PermaCem 2.0 20730226/PC Shade: A2 | EBPDMA, BisGMA, TEGDMA, TMPTMA, 10-MDP, maleic acid ester, catalysts, Ba-glass, pyrogenic silica (Filler: 69%wt, 55%v, size: 0.02–3.0 μm) | DMG, Hamburg, Germany |
Groups | Sa (μm) | Sz (μm) | Sdr (%) | Sci |
---|---|---|---|---|
CL | 0.31 (0.06) a | 2.57 (0.36) a | 4.2(1.1) a | 1.25(0.15) a |
AL | 0.69 (0.13) b | 6.03(1.10) b | 24.7(1.8) b | 1.47(0.05) b |
SJ | 0.66 (0.10) b | 6.34(0.63) b | 23.3(0.9) b | 1.61(0.09) c |
Subgroups | m | m (95% C.I.) | σο(MPa) | σο (95% C.I.) | r2 |
---|---|---|---|---|---|
ML | |||||
CL | 2.2 | 1.3–3.8 A,a | 0.5 | 0.3–0.6 C,d | 0.87 |
CLTC | 2.5 | 1.5–4.2 A,a | 0.4 | 0.3–0.5 C,d | 0.97 |
AL | 1.9 | 1.2–3.3 B,a | 2.7 | 1.9–3.8 C,b | 0.97 |
ALTC | 3.2 | 1.9–5.3 A,a | 1.1 | 0.9–1.3 B,c | 0.91 |
SJ | 2.6 | 1.7–4.2 A,a | 26.8 | 20.9–34.3 A,a | 0.95 |
SJTC | 3.7 | 2.2–6.0 A,a | 20.1 | 16.8–24.1 A,a | 0.98 |
PC | |||||
CL | 4.3 | 2.7–6.8 A,a,b | 11.0 | 9.4–12.8 A,b | 0.97 |
CLTC | 3.1 | 1.9–5.3 A,a,b | 10.4 | 8.5–12.8 A,b | 0.91 |
AL | 7.5 | 4.5–12.7 A,a | 23.0 | 21.0–25.0 B,a | 0.95 |
ALTC | 2.3 | 1.4–3.8 A,b | 18.8 | 14.1–24.9 A,a | 0.98 |
SJ | 3.9 | 2.5–6.0 A,a,b | 27.5 | 23.2–32.6 A,a | 0.95 |
SJTC | 4.7 | 2.9–7.6 A,a,b | 24.8 | 21.6–28.5 A,a | 0.96 |
PF | |||||
CL | 4.6 | 2.9–7.4 A,a | 7.9 | 6.9–9.1 B,b | 0.94 |
CLTC | 4.1 | 2.5–6.7 A,a | 3.5 | 3.0–4.1 B,c | 0.99 |
AL | 3.3 | 2.1–5.3 A,a | 17.5 | 14.4–21A,a | 0.98 |
ALTC | 2.8 | 1.8–4.3 A,a | 12.5 | 10.1–15.8 A,a | 0.96 |
SJ | 4.9 | 3.0–7.9 A,a | 15.1 | 13.2–17.3 B,a | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanakakis, E.-G.; Dimitriadi, M.; Tzoutzas, I.; Koidis, P.; Zinelis, S.; Eliades, G. Effect of Water Storage on Hardness and Interfacial Strength of Resin Composite Luting Agents Bonded to Surface-Treated Monolithic Zirconia. Dent. J. 2021, 9, 78. https://doi.org/10.3390/dj9070078
Tzanakakis E-G, Dimitriadi M, Tzoutzas I, Koidis P, Zinelis S, Eliades G. Effect of Water Storage on Hardness and Interfacial Strength of Resin Composite Luting Agents Bonded to Surface-Treated Monolithic Zirconia. Dentistry Journal. 2021; 9(7):78. https://doi.org/10.3390/dj9070078
Chicago/Turabian StyleTzanakakis, Emmanouil-George, Maria Dimitriadi, Ioannis Tzoutzas, Petros Koidis, Spiros Zinelis, and George Eliades. 2021. "Effect of Water Storage on Hardness and Interfacial Strength of Resin Composite Luting Agents Bonded to Surface-Treated Monolithic Zirconia" Dentistry Journal 9, no. 7: 78. https://doi.org/10.3390/dj9070078
APA StyleTzanakakis, E. -G., Dimitriadi, M., Tzoutzas, I., Koidis, P., Zinelis, S., & Eliades, G. (2021). Effect of Water Storage on Hardness and Interfacial Strength of Resin Composite Luting Agents Bonded to Surface-Treated Monolithic Zirconia. Dentistry Journal, 9(7), 78. https://doi.org/10.3390/dj9070078