Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Gustatory Dysfunction
Subjects | Severity of Disease | Country or Ethnicity | Number of Patients | Mean or Median Age (Range) | Male (%) | Assessment Method | Symptom | Prevalence (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
HP diagnosed according to the official guideline and by SARS-CoV-2 nucleic acid detection | Mild to critical | China | 108 | 52.0 (one patient excluded) | 48.1 | Self-reported questionnaire | Amblygeusia | Total: 47.2 Male: 36.5 Female: 57.1 | Chen et al. [9] * |
HP diagnosed by RT-PCR test | Mild to moderate | 12 European hospitals (European 93.3%, African 3.6%, South American 2.7%, North American 0.2%, Asian 0.2%) | 417 | 36.9 (19–77) | 36.9 | Self-reported questionnaire about salty, sweet, bitter and sour taste modalities | Gustatory dysfunction characterized by impairments of four tastes | 88.8 | Lechien et al. [22] * |
HP diagnosed by real-time RT-PCR test | Mild to severe | Iran | 60 | 46.6 | 66.7 | Validated UPSIT | Taste loss Taste and smell loss | 6.7 16.7 | Moein et al. [24] |
HP (diagnostic method, NS) | NS | Italy | 59 | 60 (50–74) | 67.8 | Self-reported questionnaire | Gustatory dysfunction Dysgeusia Ageusia | 28.8 8.5 1.7 | Giacomelli et al. [27] * |
Patients diagnosed by RT-PCR test | Mild (93.1%) Moderate to severe (6.9%) | USA | 59 | (18–79) | 49.2 | Self-reported online questionnaire | Ageusia | 71.2 | Yan et al. [28] |
Patients diagnosed by RT-PCR test | Mild to moderate | Subscribers of COVID-19 symptom tracker application of UK | 579 | 40.8 | 30.9 | Self-reported questionnaire | Ageusia and anosmia | 59.4 | Menni et al. [29] # |
HP diagnosed by real-time RT-PCR test | Non-severe (58.9%) Severe (41.1%) | China | 214 | 52.7 | 40.7 | Retrospective symptom survey | Taste impairment | 5.6 | Mao et al. [30] * |
Patients diagnosed presumably by RT-PCR test | Mild to moderate | Italy | 72 | 49.2 (26–90) | 37.5 | Objective evaluation using four tastants | Mild hypogeusia Moderate hypogeusia Severe hypogeusia Ageusia | 22.2 15.3 9.7 1.4 | Vaira et al. [31] * |
HQP diagnosed by RT-PCR test | Mild | Italy | 202 | 56 (45–67) | 48.0 | Self-reported questionnaire | Taste/smell alteration Very mild Mild or light Moderate Severe | 64.4 2.5 11.4 13.4 13.4 | Spinato et al. [32] * |
HP diagnosed by RT-PCR test | Mild | Israel | 42 | 34 (15–82) | 54.8 | Self-reported questionnaire | Dysgeusia | 33.3 | Levinson et al. [33] * |
Patients diagnosed by real-time RT-PCR test | NS | Italy | 72 | 49.7 (19–70) | 54.2 | Self-report of symptoms | Gustatory dysfunction Dysgeusia | 72.2 25.0 | Gelardi et al. [34] |
OP diagnosed by RT-PCR test or clinical features | NS | France | 1487 | 44 (32–57) | 47.1 (35 excluded) | Observational survey | Gustatory dysfunction Ageusia | 50.9 28.4 | Lapostolle et al. [35] |
Patients diagnosed by RT-PCR test | NS | France | 68 | NS | NS | Self-reported questionnaire | Hypogeusia | 61.8 | Bénézit et al. [36] |
IP (37%) and OP (63%) diagnosed by real-time RT-PCR | Mild to severe | France | 54 | 47 | 33.3 | Self-reported symptoms | Dysgeusia | 85.2 | Klopfenst et al. [37] |
HP diagnosed by RT-PCR test | Non-severe to severe | Spain | 79 | 61.6 | 60.8 | Self-reported questionnaire | Ageusia Hypogeusia Dysgeusia | 17.7 8.9 10.1 | Beltrán- Corbellini et al. [38] |
HP diagnosed by real-time RT-PCR test | Severe and others | USA | 16 | 65.5 | 75.0 | Self-reported questionnaire | Dysgeusia | 18.8 | Aggarwal et al. [39] |
HP diagnosed by real-time RT-PCR test | Mild to severe | Singapore | 154 | NS | NS | Self-reported questionnaire | Gustatory or olfactory dysfunction | 22.7 | Wee et al. [40] |
OP and IP diagnosed by RT-PCR test | Mild (79.7%) Severe (20.3%) | USA (White 30.8%, Black 11.5%, Hispanic 26.9%, Asian 15.4%, Others 15.4%) | OP: 102 IP: 26 | OP: 43 (34–54) IP: 53.5 (40–65) | OP: 51 IP: 34.6 | Self-reported taste and smell sense | Dysgeusia | OP: 62.7 IP: 23.1 | Yan, et al. [41] |
HQP diagnosed presumably by RT-PCR test | Asymptomatic (27.3%) Mild (45.4%) Moderate (27.3%) | Italy | 33 | 47.2 (26–64) | 33.3 | Self- or operator- administered test using four tastants | Mild hypogeusia Moderate hypogeusia Severe hypogeusia Ageusia | 24.2 12.1 9.1 6.1 | Vaira et al. [42] * |
Patients diagnosed by real-time RT-PCR test | Mild | South Korea | 172 | 26 (22–47) | 38.4 | Self-reported questionnaire | Hypogeusia | 33.7 | Kim et al. [43] |
OP diagnosed by RT-PCR test | NS | Germany | 72 | 38 (21–87) | 56.9 | Self-reported questionnaire | Gustatory dysfunction | 69.4 | Luers et al. [44] |
Patients (diagnostic method, NS) | All stages Asymptomatic to mild (73.4%) Moderate (10.6%) Severe (2.2%) Critical (1.3%) | South Korea | 3191 2342 339 71 41 | 44 (25–58) | 36.4 | Telephone interview | Ageusia | 11.1 | Lee et al. [45] * |
Patients diagnosed by RT-PCR test | NS | Switzerland | 103 | 46.8 | 48.5 | Self-reported questionnaire | Gustatory dysfunction | 65.0 | Speth et al. [46] * |
Patients diagnosed by RT-PCR test | Mild to moderate | 18 European hospitals (European 91.4%, African 4.6%, American 2.7%, Asian 0.8%) | 1420 | 39.2 | 32.3 | Self-reported questionnaire | Gustatory dysfunction | 54.2 | Lechien et al. [47] |
OP and IP (diagnostic method, NS) | NS | USA | 145 | 40 | 35.2 | Self-reported questionnaire | Taste or smell change | 65.5 | Roland et al. [48] |
HP (53.3%) and HQP (46.7%) diagnosed presumably by RT-PCR test | Asymptomatic (2.9%) Mild (48.7%) Moderate (40.6%) Severe (7.8%) | Italy | 345 | 48.5 (23–88) | 42.3 | Objective evaluation using four tastants | Mild hypogeusia Moderate hypogeusia Severe hypogeusia Ageusia | 22.6 7.2 4.6 10.4 | Vaira et al. [49] * |
Patients diagnosed by RT-PCR test | Mild to moderate | Belgium (Caucasian 92.9%, North African 7.1%) | 28 | 44.0 | 32.1 | Self-reported questionnaire based on taste and smell components of NHANES | Dysgeusia (salty, sweet, bitter, and sour tastes) | 60.7 | Lechien et al. [50] # |
HP diagnosed by RT-PCR test | NS | Germany | 47 | 63.8 | 27.7 | Self-reported questionnaire | Hypogeusia | 19.1 | Bertlich et al. [51] |
OP diagnosed by real-time RT-PCR test | NS | France | 95 | 39.8 (18–73) | 16.8 | Self-reported questionnaire | Dysgeusia | 65.3 | Zayet et al. [52] |
OP (diagnostic method, NS) | Mild to moderate | Italy | 95 | NS | NS | Self-reported questionnaire | Gustatory dysfunction | 50.5 | De Maria et al. [53] |
Patients diagnosed by RT-PCR test | NS | UK USA | Total: 7178 UK: 6452 USA: 726 | UK: 41.3 USA: 44.7 | UK: 28.1 USA: 21.9 | Self-reported questionnaire via COVID-19 symptom tracker application | Taste and smell loss | Total: 65.0 UK: 64.8 USA: 67.5 | Menni et al. [54] |
Patients diagnosed by RT-PCR test | NS | Italy | 355 | 50 | 54.1 | Self-reported questionnaire | Gustatory dysfunction | 65.4 | Dell’Era et al. [55] |
HP (diagnostic method, NS) | NS | Italy | 103 | 55 | 57.3 | Self-reported questionnaire | Dysgeusia | 46.6 | Liguori et al. [56] |
Patients diagnosed by real-time RT-PCR test | NS | Turkey | 64 | 37.8 (21–77) | 39.1 | Self-reported questionnaire | Dysgeusia Hypogeusia Ageusia | 25.0 56.3 12.5 | Sayin et al. [57] |
IP and HQP diagnosed by real-time RT-PCR test | Mild to severe | Italy | IP: 295 HQP: 213 | IP: 61.9 (24–91) HQP: 44.7 (18–74) | IP: 69.2 HQP: 38.0 | Self-reported questionnaire | Gustatory dysfunction | IP: 51.9 HQP: 78.9 | Paderno et al. [58] |
Patients diagnosed by RT-PCR test | Mild to critical | Total Chinese 60.7% French 29.4% German 9.9% | 394 239 116 39 | 38.8 30.5 48.1 43.1 | 57.1 58.4 59.6 48.1 | Self-reported questionnaire | Gustatory dysfunction in Chinese French German | 12.6 43.1 51.3 | Qiu et al. [59] * |
Household contacts of mildly symptomatic HQP (diagnostic test, NS) | NS | Italy | 54 | NS | NS | Self-reported questionnaire | Taste or smell loss | 63.0 | Boscolo-Rizzo et al. [60] |
Patients diagnosed by real-time RT-PCR test | NS | USA | 42 | NS | NS | Self-reported questionnaire | Taste loss | 57.1 | Dawson et al. [61] |
Patients diagnosed by RT-PCR test | NS | France | 198 | NS | NS | Self-reported questionnaire | Taste disorder | 46.5 | Tudrej et al. [62] |
Patients positive for SARS-CoV-2 or quarantined patients (diagnostic test, NS) | NS | Spain | 909 | 34 (16–74) | 31.3 | Self-reported online questionnaire | Gustatory dysfunction Ageusia Hypogeusia Dysgeusia | 93.0 64.1 28.2 2.4 | Gómez- Iglesias et al. [63] |
Patients diagnosed by LT or CA (diagnostic tests, NS) | NS | Europe, North, Central and South America, Oceania, Middle East, Africa, Southeast Asia | Total: 4039 LT: 1402 CA: 2637 | LT: 40.7 CA: 41.7 | LT: 23.9 CA: 29.7 | Self-reported questionnaire of changes in specific taste qualities | Single taste impairment Two or more taste qualities impairment | 11 48 | Parma et al. [64] |
NHP (quarantined in hotel) diagnosed by RT-PCR test | Mild | Israel | 128 | 36.3 (18–73) | 45.3 | Self-reported questionnaire | Gustatory dysfunction | 52.3 | Biadsee et al. [65] * |
Patients (admitted to hospital or managed in community) diagnosed by real-time RT-PCR test | NS | UK | 141 | 45.6 (20–93) | 58.9 | Self-reported questionnaire | Ageusia | 63.1 | Patel et al. [66] |
OP (92.0%) and IP (8.0%) diagnosed by RT-PCR test | Mild to moderate | 18 European hospitals (White 88.5%, South American 6.6%, North African 2.3%, Others 2.6%) | 2013 | 39.5 | 34.0 | Self-reported questionnaire based on taste and smell components of NHANES | Gustatory dysfunction | 56.4 | Lechien et al. [67] |
Patients diagnosed by RT-PCR test | NS | Canada | 134 | 57.1 | 47.8 | Self-reported questionnaire | Dysgeusia | 63.4 | Carignan et al. [68] |
IP (47.1%) and OP (52.9%) diagnosed by real-time RT-PCR test | Mild to critical | France | 70 | 56.7 (19–96) | 41.4 | Self-reported questionnaire | Dysgeusia | 48.6 | Zayet et al. [69] |
Patients diagnosed by RT-PCR test | NS | Spain | 131 | 50.4 | 42.6 | Self-reported questionnaire | Gustatory dysfunction Ageusia | 56.5 42.7 | Abalo-Lojo et al. [70] * |
HP diagnosed by RT-PCR | NS | Italy (Caucasian) | 100 | 65 (29–94) | 60.0 | Self-reported questionnaire | Gustatory dysfunction | 69.0 | Meini et al. [71] |
HP diagnosed by real-time RT-PCR | Mild to critical | USA | 50 | 59.6 | 58.0 | Reviewed neurologic symptoms | Dysgeusia and hypogeusia | 10.0 | Pinna et al. [72] |
NHP diagnosed by RT-PCR test | Mild to moderate | Poland | 1942 | 50 | 39.8 | Self-reported questionnaire | Gustatory dysfunction | 47.5 | Sierpiński et al. [73] |
Patients diagnosed by RT-PCR test | Asymptomatic or oligosymptomatic | Poland | 52 | 21.7 (19–26) | 98.1 | Self-reported questionnaire using four tastants | Taste or smell disturbance Sweet taste disorder | 65.0 71.2 | Adamczyk et al. [74] *,# |
Patients diagnosed by RT-PCR test | NS | Latin Americans (Argentina 21.4%, Peru 17.2%, Colombia 15.5%, Uruguay 13.1%) | 542 | 34 (18–88) | 40.2 | Self-reported online questionnaire | Gustatory dysfunction (salty, sweet, sour, and bitter tastes) | 61.4 | Chiesa- Estomba et al. [75] |
OP diagnosed by RT-PCR test | NS | Canada | 56 | 38.0 | 41.1 | Self-reported symptoms | Dysgeusia/ageusia | 57.1 | Lee et al. [76] |
Patients diagnosed by real-time RT-PCR test | NS | Iceland | 1211 | 41.3–44.4 | 49.4–52.0 | Self-reported symptoms | Taste or smell loss | 9.7 | Gudbjartsson et al. [77] |
Discharged patients diagnosed by real-time RT-PCR test | Severe Non-severe | China | 1172 | 61 | 49.2 | Self-reported questionnaire | Ageusia | 20.6 | Song et al. [78] |
HP (23.5%) and NHP (76.5%) diagnosed by RT-PCR test | NS | France | 115 | 47 (20–83) | 29.6 | Self-reported questionnaire | Gustatory dysfunction | 55.7 | Chary et al. [79] * |
Patients diagnosed by RT-PCR test | NS | European 88% Asian 12% | 50 | 37.7 (18–65) | 60 | Self-reported questionnaire | Gustatory dysfunction | 70.0 | Freni et al. [80] * |
OP with confirmed and suspected COVID-19 (diagnostic test, NS) | NS | Denmark | 109 | 39.4 | NS | Self-reported online questionnaire | Taste/smell loss Ageusia Hypogeusia | 87.2 69.2 23.1 | Fjaeldstad et al. [81] |
HP diagnosed by real-time RT-PCR | NS | Turkey | 81 | 54.2 (18–95) | 50.6 | Gustatory test using four tastants | Gustatory dysfunction | 27.2 | Altin et al. [82] * |
IP (76.7%) and OP (23.3%) diagnosed by RT-PCR test | NS | Spain | 846 | 56.8 (19–92) | 52.7 | Self-reported questionnaire | Taste loss in IP OP | 48.4 65.0 | Izquierdo- Dominguez et al. [83] * |
OP diagnosed by RT-PCR test | Mild to moderate | Turkey | 172 | 37.8 (18–65) | 48.8 | Self-reported questionnaire | Ageusia | 47.1 | Sakalli et al. [84] |
HP or discharged patients diagnosed by real-time RT-PCR test | NS | Italy | 204 | 52.6 | 53.9 | Retrospective questionnaire | Taste loss | 55.4 | Mercante et al. [85] * |
HP (diagnostic test, NS) | NS | Italy | 108 | 59 (18–83) | 57 | Self-reported questionnaire | Gustatory dysfunction | 61.1 | Vacchiano et al. [86] |
OP diagnosed by RT-PCR test | NS | Israel | 73 | (5–50) | NS | Self-reported questionnaire | Taste or smell impairment | 50.7 | Somekh et al. [87] |
Healthcare personnel diagnosed real-time RT-PCR test | Mild | USA | 51 | NS | 19 | Self-reported questionnaire | Ageusia | 52.9 | Kempker et al. [88] |
Healthcare workers seropositive for IgG antibodies against SARS-CoV-2 | Mild to severe | Sweden | 410 | 43 | 17.1 | Self-reported questionnaire | Ageusia Anosmia | 49.8 52.9 | Rudberg et al. [89] |
Healthcare stuff patients positive for COVID-19 (diagnostic test, NS) | NS | Italy | 300 | 43.6 (33–53) | 25.0 | Self-scoring taste quality using four tastants | Ageusia Severe hypogeusia Moderate hypogeusia Mild hypogeusia | 38.0 7.3 10.1 6.0 | Petrocelli et al. [90] * |
HP diagnosed by real-time RT-PCR test | Mild (98.8%) | China | 86 | 25.5 (6–57) | 51.2 | Self-reported questionnaire | Hypogeusia | 38.4 | Liang et al. [91] |
HP and HQP diagnosed by RT-PCR test | NS | Germany | 41 | 37 | 32 | Self-reported online questionnaire | Gustatory dysfunction | 43.9 | Hintschich et al. [92] |
Patients tested by real-time RT-PCR test (92.7% with positivity) | NS | France | 55 | 34 (28–43) | 43.6 | Self-reported chemosensory loss | Ageusia Dysgeusia | 36.4 47.3 | Salmon Ceron et al. [93] * |
IP (41.0%) and OP diagnosed by RT-PCR test | Mild (59.0%) Moderate to severe (36.7%) Critical (4.3%) | France | 139 | 48.5 | 37.4 | Retrospective questionnaire one month after recovery | Ageusia | 58.3 | Poncet- Megemont et al. [94] * |
Health care workers (nurse: 70.7%) diagnosed by RT-PCR test | NS | Italy | 82 | (<35–>55) | 31.7 | Self-reported questionnaire | Dysgeusia | 37.8 | Magnavita et al. [95] |
OP (96.3%) and IP (3.7%) diagnosed by RT-PCR test or IgG/IgM antibodies test | Mild | European 79.6% Latin American 19.4% | 1043 | 40 (18–78) | 32.8 | Self-reported questionnaire | Gustatory dysfunction | 68.8 | Chiesa- Estomba et al. [96] |
Healthcare worker patients diagnosed by RT-PCR test | Mild to severe | Spain | 230 | 43 (18–62) | 14.8 | Self-reported questionnaire | Taste alteration | 70.0 | Villarreal et al. [97] * |
Patients diagnosed by real-time RT-PCR test | NS | Spain | 215 | NS | 20.5 | Self-reported questionnaire | Hypogeusia | 53.0 | Martin-Sanz et al. [98] |
IP (23.2%) and OP (76.8%) diagnosed by RT-PCR test | NS | Italy | 138 | 51.2 | 49.3 | Self-administered test using four tastants | Gustatory dysfunction | 65.9 | Vaira et al. [99] |
Patients diagnosed by real-time RT-PCR test | NS | Somalia | 60 | 45.7 | 70.0 | Retrospective symptom survey | Ageusia | 28.3 | Farah Yusuf Mohamud et al. [100] |
OP diagnosed by RT-PCR test | NS | Spain | 197 | 46.5 (21–89) | 36.5 | Self-reported questionnaire | Ageusia | 65.0 | Rojas-Lechuga et al. [101] |
HP and NHP diagnosed by real-time RT-PCR test | Mild to critical | France | 70 | 57 | 41.4 | Retrospective symptom survey | Dysgeusia | 48.6 | Klopfenstein et al. [102] |
IP (28.3%) and OP (71.7%) diagnosed presumably by RT-PCR test | NS | Italy | 106 | 49.6 | 50.0 | Self-administered gustatory test | Ageusia Hypogeusia | 28.3 43.4 | Vaira et al. [103] |
HP (72.6%) and NHP (27.4%) diagnosed by RT-PCR test | Mild (18.4%) Moderate (61.4%) Severe (14.3%) Critical (5.8%) | Turkey | 223 | 51 | 50.7 | Self-reported questionnaire to score symptom severity | Taste loss | 34.5 | Salepci et al. [104] * |
IP (16.8%) and OP (83.2%) diagnosed by RT-PCR test | Mild to critical | Brazil | 655 | 37.7 | 35.3 | Self-reported questionnaire | Gustatory dysfunction | 76.2 | Brandão Neto et al. [105] |
Patients diagnosed by real-time RT-PCR test | Asymptomatic and mild to critical | Qatar | 141 | 35.9 (3–56) | 50.4 | Retrospective symptom survey | Gustatory dysfunction Ageusia | 19.9 11.4 | Al-Ani et al. [106] * |
Patients diagnosed by RT-PCR test | NS | Hong Kong | 83 | 36.4 (18–71) | 57.8 | Self-reported questionnaire | Gustatory dysfunction | 43.4 | Cho et al. [107] * |
HP diagnosed by RT-PCR test | Mild to moderate | Turkey | 143 | 55.6 | 53.8 | Self-reported questionnaire | Gustatory dysfunction | 35.7 | Çalıca Utku et al. [108] * |
HP diagnosed by RT-PCR test | Manchester triage Green (53.5%) Yellow (30.2%) | Germany | 43 | 71 (23–94) | 65.1 | Retrospective symptom survey | Dysgeusia | 14.0 | Fistera et al. [109] |
HP diagnosed by real-time RT-PCR test, IgG/IgM antibodies test or both | Non-severe (60.9%) Severe (39.1%) | Spain | 841 | 66.4 | 56.2 | Retrospective symptom survey | Non-severe dysgeusia Severe dysgeusia | 7.6 4.0 | Romero- Sánchez et al. [110] |
Patients diagnosed by RT-PCR test | NS | Japan | 628 | NS | 53.7 | Self-reported symptoms | Taste or smell loss | 1.0 | Komagamine et al. [111] |
Patients diagnosed by real-time RT-PCR test | NS | Italy | 111 | 57 (48–67) | 52.3 | Self-reported questionnaire | Dysgeusia | 59.5 | Fantozzi et al. [112] * |
OP (94.6%) and IP (5.4%) diagnosed by RT-PCR test | Mostly mild | Israel | 112 | 35 | 64.3 | Self-reported questionnaire | Taste change as 1st symptom as ≥2nd symptom | 25 54 | Klein et al. [113] # |
Patients diagnosed by RT-PCR test | NS | USA (White 40.5%, Non-white 59.5%) | 368 | (<40–60+) | 45.4 | Self-reported questionnaire | Ageusia | 28.5 | Dixon et al. [114] # |
3.1. Country or Ethnicity
3.2. Age
3.3. Gender
3.4. Disease Severity
3.5. Assessment Method
3.6. Quantitative Dysfunction
3.7. Qualitative Dysfunction
3.8. Onset
3.9. Duration and Recovery
3.10. Association with Olfactory Dysfunction
4. Possible Mechanisms of Gustatory Dysfunction
4.1. ACE2 Expression in Taste Cells
4.2. Zinc Deficiency
4.3. Hyposalivation
4.4. Taste Cell Inflammation
4.5. Viral Neuroinvasion
5. Xerostomia
5.1. Prevalence and Symptom Characterization
5.2. Clinical Significance
6. Possible Mechanisms of Xerostomia
6.1. ACE2 Expression in Salivary Glands
6.2. Inflammation of Salivary Glands
6.3. Zinc Deficiency
6.4. Viral Neuroinvasion
7. Other Oral Symptoms
7.1. Mucosal Lesions
7.2. Sialadenitis
7.3. Periodontal Disease
8. Dental Implications
9. Conclusions
Funding
Conflicts of Interest
References
- Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, W.; Kubota, N.; Shimizu, T.; Saruta, J.; Fuchida, S.; Kawata, A.; Yamamoto, Y.; Sugimoto, M.; Yakeishi, M.; Tsukinoki, K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int. J. Mol. Sci. 2020, 21, 6000. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, Y.; Huang, X.; Chen, Z.; Li, Y.; Liu, C.; Chen, Z.; Duan, X. Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2. J. Med. Virol. 2020, 92, 2556–2566. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Gan, F.; Du, Y.; Yao, Y. Salivary glands: Potential reservoirs for asymptomatic infection. J. Dent. Res. 2020, 99, 989. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, D.; Søland, T.M.; Galtung, H.K.; Sand, L.P.; Giannecchini, S.; To, K.K.; Mendes-Corres, M.C.; Giglio, D.; Hasséus, B.; Braz-Silva, P.H. COVID-19 salivary signature: Diagnostic and research opportunities. J. Clin. Pathol. 2020. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; et al. Detection of 2019-nCoV in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif. 2020, e12923. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, O.T.; Yip, C.C.; Chan, K.H.; Wu, T.C.; Chan, J.M.; Leung, W.S.; Chik, T.S.; Choi, C.Y.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, D.; Serrano, J.; Roldan, S.; Sanz, M. Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin. Oral Investig. 2020, 24, 2925–2930. [Google Scholar] [CrossRef]
- Pedrosa, M.S.; Sipert, C.R.; Nogueira, F.N. Salivary glands, saliva and oral findings in COVID-19 infection. Pesqui. Bras. Odontopediatria Clín. Integr. 2020, 20 (Suppl. 1), e0104. [Google Scholar] [CrossRef]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible mechanisms and implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Fini, M.B. Oral saliva and COVID-19. Oral Oncol. 2020, 108, 104821. [Google Scholar] [CrossRef]
- Lao, W.P.; Imam, S.A.; Nguyen, S.A. Anosmia, hyposmia, and dysgeusia as indicators for positive SARS-CoV-2 infection. World J. Otorhinolaryngol. Head Neck Surg. 2020, 6, S22–S25. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, H.; Ding, X.; Ji, H.; Jiao, P.; Song, H.; Li, S.; Du, H. Does infection of 2019 novel coronavirus cause acute and/or chronic sialadenitis? Med. Hypotheses 2020, 140, 109789. [Google Scholar] [CrossRef] [PubMed]
- Sinadinos, A.; Shelswell, J. Oral ulceration and blistering in patients with COVID-19. Evid. Based Dent. 2020, 21, 49. [Google Scholar] [CrossRef]
- Patel, J.; Woolley, J. Necrotizing periodontal disease: Oral manifestation of COVID-19. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 2020, 11, 1555–1562. [Google Scholar] [CrossRef]
- Chen, M.; Shen, W.; Rowan, N.R.; Kulaga, H.; Hillel, A.; Ramanathan, M.; Lane, A.P. Elevated ACE-2 expression in the olfactory neuroepithelium: Implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur. Respir. J. 2020, 56, 2001948. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Fois, A.G.; Piombino, P.; De Riu, G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int. Forum Allergy Rhinol. 2020, 10, 1103–1104. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Dodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, P.C.; Lopez, M.A.; Mastandrea Bonaviri, G.N.; Garcia-Godoy, F.; D’Addona, A. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am. J. Dent. 2020, 33, 135–137. [Google Scholar] [PubMed]
- Moein, S.T.; Hashemian, S.M.; Mansourafshar, B.; Khorram-Tousi, A.; Tabarsi, P.; Doty, R.L. Smell dysfunction: A biomarker for COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 944–950. [Google Scholar] [CrossRef]
- Mullol, J.; Alobid, I.; Mariño-Sánchez, F.; Izquierdo-Domínguez, A.; Marin, C.; Klimek, L.; Wang, D.Y.; Liu, Z. The loss of smell and taste in the COVID-19 outbreak: A tale of many countries. Curr. Allergy Asthma Rep. 2020, 20, 61. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope 2020, 130, 1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacomelli, A.; Pezzati, L.; Conti, F.; Bernacchia, D.; Siano, M.; Oreni, L.; Rusconi, S.; Gervasoni, C.; Ridolfo, A.L.; Rizzardini, G.; et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin. Infect. Dis. 2020, 71, 889–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.H.; Faraji, F.; Prajapati, D.P.; Boone, C.E.; DeConde, A.S. Association of chemosensory dysfunction and CODIV-19 in patients presenting with influenza-like symptoms. Int. Forum Allergy Rhinol. 2020, 10, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Ganesh, S.; El-Sayed Moustafa, J.S.; Visconti, A.; Hysi, P.; Bowyer, R.C.; Mangino, M.; Falchi, M.; et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv 2020. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Vaira, L.A.; Deiana, G.; Fois, A.G.; Pirina, P.; Madeddu, G.; De Vito, A.; Babudieri, S.; Petrocelli, M.; Serra, A.; Bussu, F.; et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head Neck 2020, 42, 1252–1258. [Google Scholar] [CrossRef]
- Spinato, G.; Fabbris, C.; Polesel, J.; Cazzador, D.; Borsetto, D.; Hopkins, C.; Boscolo-Rizzo, P. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 2020, 323, 2089–2090. [Google Scholar] [CrossRef] [Green Version]
- Levinson, R.; Elbaz, M.; Ben-Ami, R.; Shasha, D.; Levinson, T.; Choshen, G.; Petrov, K.; Gadoth, A.; Paran, Y. Time course of anosmia and dysgeusia in patients with mild SARS-CoV-2 infection. Infect. Dis. (Lond.) 2020, 52, 600–602. [Google Scholar] [CrossRef]
- Gelardi, M.; Trecca, E.; Cassano, M.; Ciprandi, G. Smell and taste dysfunction during the COVID-19 outbreak: A preliminary report. Acta Biomed. 2020, 91, 230–231. [Google Scholar] [CrossRef]
- Lapostolle, F.; Schneider, E.; Vianu, I.; Dollet, G.; Roche, B.; Berdah, J.; Michel, J.; Goix, L.; Chanzy, E.; Petrovic, T.; et al. Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: The COVID-call study. Intern. Emerg. Med. 2020, 15, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Bénézit, F.; Le Turnier, P.; Declerck, C.; Paillé, C.; Revest, M.; Dubée, V.; Tattevin, P.; RAN COVID Study Group. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect. Dis. 2020, 20, 1014–1015. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Kadiane-Oussou, N.J.; Toko, L.; Royer, P.Y.; Lepiller, Q.; Gendrin, V.; Zayet, S. Features of anosmia in COVID-19. Med. Mal. Infect. 2020, 50, 436–439. [Google Scholar] [CrossRef]
- Beltrán-Corbellini, Á.; Chico-García, J.L.; Martínez-Poles, J.; Rodríguez-Jorge, F.; Natera-Villalba, E.; Gómez-Corral, J.; Gómez-López, A.; Monreal, E.; Parra-Díaz, P.; Cortés-Cuevas, J.L.; et al. Acute-onset smell and taste disorders in the context of COVID-19: A pilot multicentre polymerase chain reaction based case-control study. Eur. J. Neurol. 2020, 27, 1738–1741. [Google Scholar] [CrossRef]
- Aggarwal, S.; Garcia-Telles, N.; Aggarwal, G.; Lavie, C.; Lippi, G.; Henry, B.M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis 2020, 7, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wee, L.E.; Chan, Y.F.; Teo, N.W.; Cherng, B.P.; Thien, S.Y.; Wong, H.M.; Wijaya, L.; Toh, S.T.; Tan, T.T. The role of self-reported olfactory and gustatory dysfunction as a screening criterion for suspected COVID-19. Eur. Arch. Otorhinolaryngol. 2020, 277, 2389–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.H.; Faraji, F.; Prajapati, D.P.; Ostrander, B.T.; DeConde, A.S. Self-reported olfactory loss associates with outpatient clinical course. Int. Forum Allergy Rhinol. 2020, 10, 821–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaira, L.A.; Salzano, G.; Petrocelli, M.; Deiana, G.; Salzano, F.A.; De Riu, G. Validation of a self-administered olfactory and gustatory test for the remotely evaluation of COVID-19 patients in home quarantine. Head Neck 2020, 42, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-U.; Kim, M.-J.; Ra, S.H.; Lee, J.; Bae, S.; Jung, J.; Kim, S.-H. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect. 2020, 26, 948.e1–948.e3. [Google Scholar] [CrossRef]
- Luers, J.C.; Rokohl, A.C.; Loreck, N.; Wawer Matos, P.A.; Augustin, M.; Dewald, F.; Klein, F.; Lehmann, C.; Heindl, L.M. Olfactory and gustatory dysfunction in coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2262–2264. [Google Scholar] [CrossRef]
- Lee, Y.; Min, P.; Lee, S.; Kim, S.W. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J. Korean Med. Sci. 2020, 35, e174. [Google Scholar] [CrossRef]
- Speth, M.M.; Singer-Cornelius, T.; Oberle, M.; Gengler, I.; Brockmeier, S.J.; Sedaghat, A.R. Olfactory dysfunction and sinonasal symptomatology in COVID-19: Prevalence, severity, timing, and associated characteristics. Otolaryngol. Head Neck Surg. 2020, 163, 114–120. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; Van Laethem, Y.; Cabaraux, P.; Mat, Q.; Huet, K.; Plzak, J.; Horoi, M.; Hans, S.; et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J. Intern. Med. 2020, 288, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Roland, L.T.; Gurrola, J.G.; Loftus, P.A.; Cheung, S.W.; Chang, J.L. Smell and taste symptom-based predictive model for COVID-19 diagnosis. Int. Forum Allergy Rhinol. 2020, 10, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Hopkins, C.; Salzano, G.; Petrocelli, M.; Melis, A.; Cucurullo, M.; Ferrari, M.; Gagliardini, L.; Pipolo, C.; Deiana, G.; et al. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter-study. Head Neck 2020, 42, 1560–1569. [Google Scholar] [CrossRef]
- Lechien, J.R.; Cabaraux, P.; Chiesa-Estomba, C.M.; Khalife, M.; Hans, S.; Martiny, D.; Saussez, S. Psychophysical olfactory findings of mild-to-moderate COVID-19 patients: Preliminary report. medRxiv 2020. [Google Scholar] [CrossRef]
- Bertlich, M.; Stihl, C.; Weiss, B.G.; Canis, M.; Haubner, F.; Ihler, F. Characteristics of impaired chemosensory function in hospitalized COVID-19 patients. SSRN 2020. [Google Scholar] [CrossRef]
- Zayet, S.; Klopfenstein, T.; Mercier, J.; Kadiane-Oussou, N.J.; Lan Cheong Wah, L.; Royer, P.Y.; Toko, L.; Gendrin, V. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2020. [Google Scholar] [CrossRef]
- De Maria, A.; Varese, P.; Dentone, C.; Barisione, E.; Bassetti, M. High prevalence of olfactory and taste disorder during SARS-CoV-2 infection in outpatients. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; El-Sayed Moustafa, J.S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Dell’Era, V.; Farri, F.; Garzaro, G.; Gatto, M.; Aluffi Valletti, P.; Garzaro, M. Smell and taste disorders during COVID-19 outbreak: Cross-sectional study on 355 patients. Head Neck 2020, 42, 1591–1596. [Google Scholar] [CrossRef]
- Liguori, C.; Pierantozzi, M.; Spanetta, M.; Sarmati, L.; Cesta, N.; Iannetta, M.; Ora, J.; Mina, G.G.; Puxeddu, E.; Balbi, O.; et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav. Immun. 2020, 88, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Sayin, I.; Yaşar, K.K.; Yazici, Z.M. Taste and smell impairment in COVID-19: An AAO-HNS anosmia reporting tool-based compaative study. Otolaryngol. Head Neck Surg. 2020, 163, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Paderno, A.; Schreiber, A.; Grammatica, A.; Raffetti, E.; Tomasoni, M.; Gualtieri, T.; Taboni, S.; Zorzi, S.; Lombardi, D.; Deganello, A. Smell and taste alterations in COVID-19: A cross-sectional analysis of different cohorts. Int. Forum Allergy Rhinol. 2020, 10, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Cui, C.; Hautefort, C.; Haehner, A.; Zhao, J.; Yao, Q.; Zeng, H.; Nisenbaum, E.J.; Liu, L.; Zhao, Y.; et al. Olfactory and gustatory dysfunctions as an early identifier of COVID-19 in adults and children: An international multicenter study. Otolaryngol. Head Neck Surg. 2020, 163, 714–721. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Borsetto, D.; Spinato, G.; Fabbris, C.; Menegaldo, A.; Gaudioso, P.; Nicolai, P.; Tirelli, G.; Da Mosto, M.C.; Rigoli, R.; et al. New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2-positive subjects. Eur. Arch. Otorhinolaryngol. 2020, 277, 2637–2640. [Google Scholar] [CrossRef]
- Dawson, P.; Rabold, E.M.; Laws, R.L.; Conners, E.E.; Gharpure, R.; Yin, S.; Biono, S.A.; Dasu, T.; Bhattacharyya, S.; Westergaard, R.P.; et al. Loss of taste and smell as distinguishing symptoms of COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Tudrej, B.; Sebo, P.; Lourdaux, J.; Cuzin, C.; Floquet, M.; Haller, D.M.; Maisonneuve, H. Self-reported loss of smell and taste in SARS-CoV-2 patients: Primary care data to guide future early detection strategies. J. Gen. Intern. Med. 2020, 35, 2502–2504. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Iglesias, P.; Porta-Etessam, J.; Montalvo, T.; Valls-Carbó, A.; Gajate, V.; Matías-Guiu, J.A.; Parejo-Carbonell, B.; González-García, N.; Ezpeleta, D.; Láinez, J.M.; et al. An online observational study of patients with olfactory and gustory alterations secondary to SARS-CoV-2 infection. Front. Public Health 2020, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Parma, V.; Ohla, K.; Veldhuizen, M.G.; Niv, M.Y.; Kelly, C.E.; Bakke, A.J.; Cooper, K.W.; Bouysset, C.; Pirastu, N.; Dibattista, M.; et al. More than smell—COVID-19 is associated with severe impairment of smell, tastes, and chemesthesis. Chem. Senses 2020, 45, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Biadsee, A.; Biadsee, A.; Kassem, F.; Dagan, O.; Masarwa, S.; Ormianer, Z. Olfactory and oral manifestations of COVID-19: Sex-related symptoms—A potential pathway to early diagnosis. Otolaryngol. Head Neck Surg. 2020, 163, 722–728. [Google Scholar] [CrossRef]
- Patel, A.; Charani, E.; Ariyanayagam, D.; Abdulaal, A.; Denny, S.J.; Mughal, N.; Moore, L.S.P. New-onset anosmia and ageuisia in adult patients diagnosed with SARS-CoV-2 infection. Clin. Microbiol. Infect. 2020, 26, 1236–1241. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Hans, S.; Barillari, M.R.; Jouffe, L.; Saussez, S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann. Intern. Med. 2020, 173, 672–675. [Google Scholar] [CrossRef]
- Carignan, A.; Valiquette, L.; Grenier, C.; Musonera, J.B.; Nkengurutse, D.; Marcil-Héguy, A.; Vettese, K.; Marcoux, D.; Valiquette, C.; Xiong, W.T.; et al. Anosmia and dysgeusia associated with SARS-CoV-2 infection: An age-matched case-control study. CMAJ 2020, 192, E702–E707. [Google Scholar] [CrossRef]
- Zayet, S.; Kadiane-Oussou, N.J.; Lepiller, Q.; Zahra, H.; Royer, P.Y.; Toko, L.; Gendrin, V.; Klopfenstein, T. Clinical features of COVID-19 and influenza: A comparative study on Nord Franche-Comte cluster. Microbes Infect. 2020, 22, 481–488. [Google Scholar] [CrossRef]
- Abalo-Lojo, J.M.; Pouso-Diz, J.M.; Gonzalez, F. Taste and smell dysfunction in COVID-19 patients. Ann. Otol. Rhinol. Laryngol. 2020, 129, 1041–1042. [Google Scholar] [CrossRef]
- Meini, S.; Suardi, L.R.; Busoni, M.; Roberts, A.T.; Fortini, A. Olfactory and gustatory dysfunctions in 100 patients hospitalized for COVID-19: Sex differences and recovery time in real-life. Eur. Arch. Otorhinolaryngol. 2020, 277, 3519–3523. [Google Scholar] [CrossRef]
- Pinna, P.; Grewal, P.; Hall, J.P.; Tavarez, T.; Dafer, R.M.; Garg, R.; Osteraas, N.D.; Pellack, D.R.; Asthana, A.; Fegan, K.; et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J. Neurol. Sci. 2020, 415, 116969. [Google Scholar] [CrossRef]
- Sierpiński, R.; Pinkas, J.; Jankowski, M.; Zgliczyński, W.S.; Wierzba, W.; Gujski, M.; Szumowski, Ł. Sex differences in the frequency of gastrointestinal symptoms and olfactory or taste disorders in 1942 nonhospitalized patients with coronavirus disease 2019 (COVID-19). Pol. Arch. Intern. Med. 2020, 130, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, K.; Herman, M.; Frączek, J.; Piec, R.; Szykuła-Piec, B.; Zaczyński, A.; Wójtowicz, R.; Bojanowski, K.; Rusyan, E.; Król, Z.; et al. Sensitivity and specificity of prediction models based on gustatory disorders in diagnosing COVID-19 patients: A case-control study. medRxiv 2020. [Google Scholar] [CrossRef]
- Chiesa-Estomba, C.M.; Lechien, J.R.; Portillo-Mazal, P.; Martínez, F.; Cuauro-Sanchez, J.; Calvo-Henriquez, C.; Saussez, S. Olfactory and gustatory dysfunctions in COVID-19. First reports of Latin-American ethnic patients. Am. J. Otolaryngol. 2020, 41, 102605. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Lockwood, J.; Das, P.; Wang, R.; Grinspun, E.; Lee, J.M. Self-reported anosmia and dysgeusia as key symptoms of coronavirus disease 2019. CJEM 2020, 22, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Helgason, A.; Jonsson, H.; Magnusson, O.T.; Melsted, P.; Norddahl, G.L.; Saemundsdottir, J.; Sigurdsson, A.; Sulem, P.; Agustsdottir, A.B.; et al. Spread of SARS-CoV-2 in the Icelandic population. N. Engl. J. Med. 2020, 382, 2302–2315. [Google Scholar] [CrossRef]
- Song, J.; Deng, Y.K.; Wang, H.; Wang, Z.C.; Liao, B.; Ma, J.; He, C.; Pan, L.; Liu, Y.; Alobid, I.; et al. Self-reported taste and smell disorders in patients with COVID-19: Distinct features in China. Curr. Med. Sci. 2021, 41, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Chary, E.; Carsuzaa, F.; Trijolet, J.P.; Capitaine, A.L.; Roncato-Saberan, M.; Fouet, K.; Cazenave-Roblot, F.; Catroux, M.; Allix-Beguec, C.; Dufour, X. Prevalence and recovery from olfactory and gustatory dysfunctions in Covid-19 infection: A prospective multicenter study. Am. J. Rhinol. Allergy 2020, 34, 686–693. [Google Scholar] [CrossRef]
- Freni, F.; Meduri, A.; Gazia, F.; Nicastro, V.; Galletti, C.; Aragona, P.; Galletti, C.; Galletti, B.; Galletti, F. Symptomatology in head and neck district in coronavirus disease (COVID-19): A possible neuroinvasive action of SARS-CoV-2. Am. J. Otolaryngol. 2020, 41, 102612. [Google Scholar] [CrossRef]
- Fjaeldstad, A.W. Prolonged complaints of chemosensory loss after COVID-19. Dan. Med. J. 2020, 67, A05200340. [Google Scholar]
- Altin, F.; Cingi, C.; Uzun, T.; Bal, C. Olfactory and gustatory abnormalities in COVID-19 cases. Eur. Arch. Otorhinolaryngol. 2020, 277, 2775–2781. [Google Scholar] [CrossRef]
- Izquierdo-Domínguez, A.; Rojas-Lechuga, M.J.; Chiesa-Estomba, C.; Calvo-Henríquez, C.; Ninchritz-Becerra, E.; Soriano-Reixach, M.; Poletti-Serafini, D.; Villarreal, I.M.; Maza-Solano, J.M.; Moreno-Luna, R.; et al. Smell and taste dysfunction in COVID-19 is associated with younger age in ambulatory settings: A multicenter cross-sectional study. J. Investig. Allergol. Clin. Immunol. 2020, 30, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Sakalli, E.; Temirbekov, D.; Bayri, E.; Alis, E.E.; Erdurak, S.C.; Bayraktaroglu, M. Ear nose throat-related symptoms with a focus on loss of smell and/or taste in COVID-19 patients. Am. J. Otolaryngol. 2020, 41, 102622. [Google Scholar] [CrossRef] [PubMed]
- Mercante, G.; Ferreli, F.; De Virgilio, A.; Gaino, F.; Di Bari, M.; Colombo, G.; Russo, E.; Costantino, A.; Pirola, F.; Cugini, G.; et al. Prevalence of taste and smell dysfunction in coronavirus disease 2019. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 723–728. [Google Scholar] [CrossRef]
- Vacchiano, V.; Riguzzi, P.; Volpi, L.; Tappatà, M.; Avoni, P.; Rizzo, G.; Guerra, L.; Zaccaroni, S.; Cortelli, P.; Michelucci, R.; et al. Early neurological manifestations of hospitalized COVID-19 patients. Neurol. Sci. 2020, 41, 2029–2031. [Google Scholar] [CrossRef] [PubMed]
- Somekh, I.; Hanna, H.Y.; Heller, E.; Bibi, H.; Somekh, E. Age-dependent sensory impairment in COVID-19 infection and its correlation with ACE2 expression. Pediatr. Infect. Dis. J. 2020, 39, e270–e272. [Google Scholar] [CrossRef] [PubMed]
- Kempker, R.R.; Kempker, J.A.; Peters, M.; Rebolledo, P.A.; Carroll, K.; Toomer, L.; Wang, Y.F.W.; Ray, S.M.; Hunter, M. Loss of smell and taste among healthcare personnel screened for coronavirus 2019. Clin. Infect. Dis. 2020, ciaa877. [Google Scholar] [CrossRef]
- Rudberg, A.S.; Havervall, S.; Månberg, A.; Falk, A.J.; Aguilera, K.; Ng, H.; Gabrielsson, L.; Salomonsson, A.C.; Hanke, L.; Murrell, B.; et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 2020, 11, 5064. [Google Scholar] [CrossRef]
- Petrocelli, M.; Ruggiero, F.; Baietti, A.M.; Pandolfi, P.; Salzano, G.; Salzano, F.A.; Lechien, J.R.; Saussez, S.; De Riu, G.; Vaira, L.A. Remote psychophysical evaluation of olfactory and gustatory functions in early-stage coronavirus disease 2019 patients: The Bologna experience of 300 cases. J. Laryngol. Otol. 2020, 134, 571–576. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, J.; Chu, M.; Mai, J.; Lai, N.; Tang, W.; Yang, T.; Zhang, S.; Guan, C.; Zhong, F.; et al. Neurosensory dysfunction: A diagnostic marker of early COVID-19. Int. J. Infect. Dis. 2020, 98, 347–352. [Google Scholar] [CrossRef]
- Hintschich, C.A.; Wenzel, J.J.; Hummel, T.; Hankir, M.K.; Kühnel, T.; Vielsmeier, V.; Bohr, C. Psychophysical tests reveal impaired olfaction but preserved gustation in COVID-19 patients. Int. Forum Allergy Rhinol. 2020. [Google Scholar] [CrossRef]
- Salmon Ceron, D.; Bartier, S.; Hautefort, C.; Nguyen, Y.; Nevoux, J.; Hamel, A.L.; Camhi, Y.; Canouï-Poitrine, F.; Verillaud, B.; Slama, D.; et al. Self-reported loss of smell without nasal obstruction to identify COVID-19. The multicenter Coranosmia cohort study. J. Infect. 2020, 81, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Poncet-Megemont, L.; Paris, P.; Tronchere, A.; Salazard, J.P.; Pereira, B.; Dallel, R.; Aumeran, C.; Beytout, J.; Jacomet, C.; Laurichesse, H.; et al. High prevalence of headaches during Covid-19 infection: A retrospective cohort study. Headache 2020, 60, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Magnavita, N.; Tripepi, G.; Di Prinzio, R.R. Symptoms in health care workers during the COVID-19 epidemic. A cross-sectional survey. Int. J. Environ. Res. Public Health 2020, 17, 5218. [Google Scholar] [CrossRef] [PubMed]
- Chiesa-Estomba, C.M.; Lechien, J.R.; Barillari, M.R.; Saussez, S. Patterns of gustatory recovery in patients affected by the COVID-19 outbreak. Virol. Sin. 2020, 35, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, I.M.; Morato, M.; Martínez-RuizCoello, M.; Navarro, A.; Garcia-Chillerón, R.; Ruiz, Á.; de Almeida, I.V.; Mazón, L.; Plaza, G. Olfactory and taste disorders in healthcare workers with COVID-19 infection. Eur. Arch. Otorhinolaryngol. 2020. [Google Scholar] [CrossRef]
- Martin-Sanz, E.; Riestra, J.; Yebra, L.; Larran, A.; Mancino, F.; Yanes-Diaz, J.; Garrote, M.; Colmenero, M.; Montiel, E.; Molina, C.; et al. Prospective study in 355 patients with suspected COVID-19 infection. Value of cough, subjective hyposmia, and hypogeusia. Laryngoscope 2020, 130, 2674–2679. [Google Scholar] [CrossRef]
- Vaira, L.A.; Hopkins, C.; Petrocelli, M.; Lechien, J.R.; Chiesa-Estomba, C.M.; Salzano, G.; Cucurullo, M.; Salzano, F.A.; Saussez, S.; Boscolo-Rizzo, P.; et al. Smell and taste recovery in coronavirus disease 2019 patients: A 60-day objective and prospective study. J. Laryngol. Otol. 2020, 134, 703–709. [Google Scholar] [CrossRef]
- Farah Yusuf Mohamud, M.; Garad Mohamed, Y.; Mohamed Ali, A.; Ali Adam, B. Loss of taste and smell are common clinical characteristics of patients with COVID-19 in Somalia: A retrospective double centre study. Infect. Drug Resist. 2020, 13, 2631–2635. [Google Scholar] [CrossRef]
- Rojas-Lechuga, M.J.; Izquierdo-Domínguez, A.; Chiesa-Estomba, C.; Calvo-Henríquez, C.; Villarreal, I.M.; Cuesta-Chasco, G.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I. Chemosensory dysfunction in COVID-19 out-patients. Eur. Arch. Otorhinolaryngol. 2020, 278, 695–702. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Zahra, H.; Kadiane-Oussou, N.J.; Lepiller, Q.; Royer, P.Y.; Toko, L.; Gendrin, V.; Zayet, S. New loss of smell and taste: Uncommon symptoms in COVID-19 patients on Nord Franche-Comte cluster, France. Int. J. Infect. Dis. 2020, 100, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Hopkins, C.; Petrocelli, M.; Lechien, J.R.; Soma, D.; Giovanditto, F.; Rizzo, D.; Salzano, G.; Piombino, P.; Saussez, S.; et al. Do olfactory and gustatory psychophysical scores have prognostic value in COVID-19 patients? A prospective study of 106 patients. J. Otolaryngol. Head Neck Surg. 2020, 49, 56. [Google Scholar] [CrossRef] [PubMed]
- Salepci, E.; Turk, B.; Ozcan, S.N.; Bektas, M.E.; Aybal, A.; Dokmetas, I.; Turgut, S. Symptomatology of COVID-19 from the otorhinolaryngology perspective: A survey of 223 SARS-CoV-2 RNA-positive patients. Eur. Arch. Otorhinolaryngol. 2020, 278, 525–535. [Google Scholar] [CrossRef]
- Brandão Neto, D.; Fornazieri, M.A.; Dib, C.; Di Francesco, R.C.; Doty, R.L.; Voegels, R.L.; Pinna, F.R. Chemosensory dysfunction in COVID-19: Prevalences, recovery rates, and clinical associations on a large Brazilian sample. Otolaryngol. Head Neck Surg. 2020. [Google Scholar] [CrossRef]
- Al-Ani, R.M.; Acharya, D. Prevalence of anosmia and ageusia in patients with COVID-19 at a primary health center, Doha, Qatar. Indian J. Otolaryngol. Head Neck Surg. 2020, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cho, R.H.; To, Z.W.; Yeung, Z.W.; Tso, E.Y.; Fung, K.S.; Chau, S.K.; Leung, E.Y.; Hui, T.S.; Tsang, S.W.; Kung, K.N.; et al. COVID-19 viral load in the severity of and recovery from olfactory and gustatory dysfunction. Laryngoscope 2020, 130, 2680–2685. [Google Scholar] [CrossRef]
- Çalıca Utku, A.; Budak, G.; Karabay, O.; Güçlü, E.; Okan, H.D.; Vatan, A. Main symptoms in patients presenting in the COVID-19 period. Scott. Med. J. 2020, 65, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Fistera, D.; Pabst, D.; Härtl, A.; Schaarschmidt, B.M.; Umutlu, L.; Dolff, S.; Holzner, C.; Kill, C.; Risse, J. Separating the wheat from the chaff-COVID-19 in a German emergency department: A case-control study. Int. J. Emerg. Med. 2020, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Romero-Sánchez, C.M.; Díaz-Maroto, I.; Fernández-Díaz, E.; Sánchez-Larsen, Á.; Layos-Romero, A.; García-García, J.; González, E.; Redondo-Peñas, I.; Perona-Moratalla, A.B.; Del Valle-Pérez, J.A.; et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020, 95, e1060–e1070. [Google Scholar] [CrossRef]
- Komagamine, J.; Yabuki, T. Initial symptoms of patients with coronavirus disease 2019 in Japan: A descriptive study. J. Gen. Family Med. 2020, 22, 61–64. [Google Scholar] [CrossRef]
- Fantozzi, P.J.; Pampena, E.; Di Vanna, D.; Pellegrino, E.; Corbi, D.; Mammucari, S.; Alessi, F.; Pampena, R.; Bertazzoni, G.; Minisola, S.; et al. Xerostomia, gustatory and olfactory dysfunctions in patients with COVID-19. Am. J. Otolaryngol. 2020, 41, 102721. [Google Scholar] [CrossRef]
- Klein, H.; Asseo, K.; Karni, N.; Benjamini, Y.; Nir-Paz, R.; Muszkat, M.; Israel, S.; Niv, M.Y. Onset, duration, and persistence of taste and smell changes and other COVID-19 symptoms: Longitudinal study in Israeli patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Dixon, B.E.; Wools-Kaloustian, K.; Fadel, W.F.; Duszynski, T.J.; Yiannoutsos, C.; Halverson, P.K.; Menachemi, N. Symptoms and symptom clusters associated with SARS-CoV-2 infection in community-based populations: Results from a statewide epidemiological study. medRxiv 2020. [Google Scholar] [CrossRef]
- Tong, J.Y.; Wong, A.; Zhu, D.; Fastenberg, J.H.; Tham, T. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: A systematic review and meta-analysis. Otolaryngol. Head Neck Surg. 2020, 163, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.V.; Carnaúba, A.T.; Rocha, K.W.; Andrade, K.C.; Ferreira, S.M.; Menezes, P.L. Olfactory and taste disorders in COVID-19: A systematic review. Braz. J. Otorhinolaryngol. 2020, 86, 781–792. [Google Scholar] [CrossRef]
- Samaranayake, L.P.; Fakhruddin, K.S.; Panduwawala, C. Sudden onset, acute loss of taste and smell in coronavirus disease 2019 (COVID-19): A systematic review. Acta Odontol. Scand. 2020, 78, 467–473. [Google Scholar] [CrossRef] [PubMed]
- von Bartheld, C.S.; Hagen, M.M.; Butowt, R. Prevalence of chemosensory dysfunction in COVID-19 patients: A systematic review and meta-analysis reveals significant ethnic differences. ACS Chem. Neurosci. 2020, 11, 2944–2961. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, A.A.; Chin, K.L.; Landersdorfer, C.B.; Liew, D.; Ofori-Asenso, R. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clin. Proc. 2020, 95, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.K.; Gendeh, H.S.; Thong, H.K.; Lum, S.G.; Gendeh, B.S.; Saim, A.; Husain, S. A review of smell and taste dysfunction in COVID-19 patients. Med. J. Malays. 2020, 75, 574–581. [Google Scholar]
- Aziz, M.; Perisetti, A.; Lee-Smith, W.M.; Gajendran, M.; Bansal, P.; Goyal, H. Taste changes (dysgeusia) in COVID-19: A systematic review and meta-analysis. Gastroenterology 2020, 159, 1132–1133. [Google Scholar] [CrossRef] [PubMed]
- Amorim dos Santos, J.; Normando, A.G.C.; Carvalho da Silva, R.L.; Acevedo, A.C.; De Luca Canto, G.; Sugaya, N.; Santos-Silva, A.R.; Guerra, E.N.S. Oral manifestations in patients with COVID-19: A living systematic review. J. Dent. Res. 2020, 100, 141–154. [Google Scholar] [CrossRef]
- Cirillo, N.; Bizzoca, M.E.; Lo Muzio, E.; Cazzolla, A.P.; Lo Muzio, L. Gustatory dysfunction in COVID-19 patients: A rapid systematic review on 27,687 cases. Acta Odontol. Scand. 2021. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.M.; Chen, M.J.; Hong, T.C.; Wu, M.S. Alteration of taste or smell as a predictor of COVID-19. Gut 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Vargas-Alarcón, G.; Posadas-Sánchez, R.; Ramírez-Bello, J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci. 2020, 260, 118313. [Google Scholar] [CrossRef]
- Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY) 2020, 12, 10087–10098. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Bartoshuk, L.M.; Fillingim, R.B.; Dotson, C.D. Exploring ethnic differences in taste perception. Chem. Senses 2016, 41, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Viner, R.M.; Mytton, O.T.; Bonell, C.; Melendez-Torres, G.J.; Ward, J.L.; Hudson, L.; Waddington, C.; Thomas, J.; Russell, S.; van der Klis, F.; et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: A systematic review and meta-analysis. JAMA Pediatr. 2020, e204573. [Google Scholar] [CrossRef]
- Heald-Sargent, T.; Muller, W.J.; Zheng, X.; Rippe, J.; Patel, A.B.; Kociolek, L.K. Age-related differences in nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate coronavirus disease 2019 (COVID-19). JAMA Pediatr. 2020, 174, 902–903. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Jantzie, L.L. COVID-19: Neurological considerations in neonates and children. Children 2020, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Fontanet, A.; Grant, R.; Tondeur, L.; Madec, Y.; Grzelak, L.; Cailleau, I.; Ungeheuer, M.N.; Renaudat, C.; Pellerin, S.F.; Kuhmel, L. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission. medRxiv 2020. [Google Scholar] [CrossRef]
- Mak, P.Q.; Chung, K.S.; Wong, J.S.; Shek, C.C.; Kwan, M.Y. Anosmia and ageusia: Not an uncommon presentation of COVID-19 infection in children and adolescents. Pediatr. Infect. Dis. J. 2020, 39, e199–e200. [Google Scholar] [CrossRef]
- Russo, R.; Andolfo, I.; Lasorsa, V.A.; Iolascon, A.; Capasso, M. Genetic analysis of the coronavirus SARS-CoV-2 host protease TMPRSS2 in different populations. Front. Genet. 2020, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Bossé, Y.; Xiao, F.; Kheradmand, F.; Amos, C.I. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020, 201, 1557–1559. [Google Scholar] [CrossRef]
- Gemousakakis, T.; Kotini, A.; Anninos, P.; Zissimopoulos, A.; Prassopoulos, P. MEG evaluation of taste by gender difference. J. Integr. Neurosci. 2011, 10, 537–545. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Miller, I.J. PTC/PROP tasting: Anatomy, psychophysics, and sex effects. Physiol. Behav. 1994, 56, 1165–1171. [Google Scholar] [CrossRef]
- Borsetto, D.; Hopkins, C.; Philips, V.; Obholzer, R.; Tirelli, G.; Polesel, J.; Boscolo-Rizzo, P. Self-reported alteration of sense of smell or taste in patients with COVID-19: A systematic review and meta-analysis on 3563 patients. Rhinology 2020, 58, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Pingel, J.; Ostwald, J.; Pau, H.W.; Hummel, T.; Just, T. Normative data for a solution-based taste test. Eur Arch. Otorhinolaryngol. 2010, 267, 1911–1917. [Google Scholar] [CrossRef]
- Pandurangan, M.; Hwang, I. Systemic mechanism of taste, flavour and palatability in brain. Appl. Biochem. Biotechnol. 2015, 175, 3133–3147. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Salzano, G.; De Riu, G. The importance of olfactory and gustatory disorders as early symptoms of coronavirus disease (COVID-19). Br. J. Oral Maxillofac. Surg. 2020, 58, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Boscolo-Rizzo, P.; Polesel, J.; Spinato, G.; Menegaldo, A.; Fabbris, C.; Calvanese, L.; Borsetto, D.; Hopkins, C. Predominance of an altered sense of smell or taste among long-lasting symptoms in patients with mildly symptomatic COVID-19. Rhinology 2020, 58, 524–525. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F.; the Gemelli against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Lovato, A.; Galletti, C.; Galletti, B.; de Filippis, C. Clinical characteristics associated with persistent olfactory and taste alterations in COVID-19: A preliminary report on 121 patients. Am. J. Otolaryngol. 2020, 41, 102548. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, E.T.; Schiabor Barrett, K.M.; Riffle, S.; Bolze, A.; Neveux, I.; Dabe, S.; Grzymski, J.J.; Lu, J.T.; Washington, N.L. Long-term COVID-19 symptoms in a large unselected population. medRxiv 2020. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Kepnes, L.J. Contemporary assessment of the prevalence of smell and taste problems in adults. Laryngoscope 2015, 125, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ueha, R.; Goto, T.; Yamauchi, A.; Kondo, K.; Yamasoba, T. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats: Implications on COVID 19 infections. Laryngoscope 2020. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Marshall, B.; Rekaya, R.; Ye, K.; Liu, H.X. SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacol. Transl. Sci. 2020, 3, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Peng, J.; Xu, H.; Chen, Q. Taste cell is abundant in the expression of ACE2 receptor of 2019-nCoV. Preprints. 2020. Available online: https://www.preprints.org/manuscript/202004.0424/v1 (accessed on 14 December 2020).
- Sukumaran, S.K.; Lewandowski, B.C.; Qin, Y.; Kotha, R.; Bachmanov, A.A.; Margolskee, R.F. Whole transcriptome profiling of taste bud cells. Sci. Rep. 2017, 7, 7595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roper, S.D.; Chaudhari, N. Taste buds: Cells, signals and synapses. Nat. Rev. Neurosci. 2017, 18, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Stollberger, C. Causes of hypogeusia/hyposmia in SARS-CoV2 infected patients. J. Med. Virol. 2020, 92, 1793–1794. [Google Scholar] [CrossRef] [Green Version]
- Shigemura, N.; Iwata, S.; Yasumatsu, K.; Ohkuri, T.; Horio, N.; Sanematsu, K.; Yoshida, R.; Margolskee, R.F.; Ninomiya, Y. Angiotensin II modulates salty and sweet taste sensitivities. J. Neurosci. 2013, 33, 6267–6277. [Google Scholar] [CrossRef]
- Shigemura, N.; Takai, S.; Hirose, F.; Yoshida, R.; Sanematsu, K.; Ninomiya, Y. Expression of renin-angiotensin system components in the taste organ of mice. Nutrients 2019, 11, 2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruoka, S.; Wakaumi, M.; Araki, N.; Ioka, T.; Sugimoto, K.; Fujimura, A. Comparative study of taste disturbance by losartan and perindopril in healthy volunteers. J. Clin. Pharmacol. 2005, 45, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Hu, S.; Zhou, Y. ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: Implication for COVID-19. Aging 2020, 12, 6518–6535. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.; Xia, X.; Liu, K.; Yu, Z.; Tao, W.; Gong, W.; Han, J.J. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell 2020, 19, e13168. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, T.; Asakawa, A.; Ueda, H.; Ikeda, S.; Miyawaki, S.; Inui, A. The role of zinc in the treatment of taste disorders. Recent Pat. Food Nutr. Agric. 2013, 5, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, S.M.; Hujoel, P.; Habiger, S.; Friess, W.; Wichmann, M.; Heckmann, J.G.; Hummel, T. Zinc gluconate in the treatment of dysgeusia–a randomized clinical trial. J. Dent. Res. 2005, 84, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Vogel-González, M.; Talló-Parra, M.; Herrera-Fernández, V.; Pérez-Vilaró, G.; Chillón, M.; Nogués, X.; Gómez-Zorrilla, S.; López-Montesinos, I.; Arnau-Barrés, I.; Sorli-Redó, M.L.; et al. Low zinc levels at admission associates with poor outcomes in SARS-CoV-2 infection. Nutrients 2021, 13, 562. [Google Scholar] [CrossRef]
- Okayama, T.; Watanabe, H. Association between taste perception, nutrient intake, and mental health in young Japanese women. Nutr. Res. Pract. 2019, 13, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Sekine, H.; Takao, K.; Ikeda, M. Expression and localization of taste receptor genes in the vallate papillae of rats: Effect of zinc deficiency. Acta Otolaryngol. 2013, 133, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Takaoka, T.; Ueda, C.; Toda, N.; Kalubi, B.; Yamamoto, S. Zinc deficiency in patients with idiopathic taste impairment with regard to angiotensin converting enzyme activity. Auris Nasus Larynx 2004, 31, 425–428. [Google Scholar] [CrossRef]
- da Silva Pedrosa, M.; Sipert, C.R.; Nogueira, F.N. Altered taste in patients with COVID-19: The potential role of salivary glands. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Satoh-Kuriwada, S.; Shoji, N.; Kawai, M.; Uneyama, H.; Kaneta, N.; Sasano, T. Hyposalivation strongly influences hypogeusia in the elderly. J. Health Sci. 2009, 55, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Jo, Y.; Lee, Y.H.; Park, K.; Park, H.K.; Choi, S.Y. Zn2+ stimulates salivary secretions via metabotropic zinc receptor ZnR/GPR39 in human salivary gland cells. Sci. Rep. 2019, 9, 17648. [Google Scholar] [CrossRef] [PubMed]
- Cohn, Z.J.; Kim, A.; Huang, L.; Brand, J.; Wang, H. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci. 2010, 11, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhou, M.; Brand, J.; Huang, L. Inflammation and taste disorders: Mechanisms in taste buds. Ann. N. Y. Acad. Sci. 2009, 1170, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Ardila, A. COVID-19 pandemic: A neurological perspective. Cureus 2020, 12, e7889. [Google Scholar] [CrossRef]
- Hoang, M.P.; Kanjanaumporn, J.; Aeumjaturapat, S.; Chusakul, S.; Seresirikachorn, K.; Snidvongs, K. Olfactory and gustatory dysfunctions in COVID-19 patients: A systematic review and meta-analysis. Asian Pac. J. Allergy Immunol. 2020, 38, 162–169. [Google Scholar] [CrossRef]
- Keyhan, S.O.; Fallahi, H.R.; Cheshmi, B. Dysosmia and dysgeusia due to the 2019 Novel Coronavirus; a hypothesis that needs further investigation. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niklander, S.; Veas, L.; Barrera, C.; Fuentes, F.; Chiappini, G.; Marshall, M. Risk factors, hyposalivation and impact of xerostomia on oral health-related quality of life. Braz. Oral Res. 2017, 31, e14. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, H.; Fujibayashi, T.; Yamane, G.Y.; Imai, H.; Nakao, H. Relationship between hyposalivation and acute respiratory infection in dental outpatients. Gerontology 2012, 58, 205–211. [Google Scholar] [CrossRef]
- Farshidfar, N.; Hamedani, S. Hyposalivation as a potential risk for SARS-CoV-2 infection: Inhibitory role of saliva. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Lu, J.; Xu, X.; Long, W.; Yan, G.; Tang, M.; Zou, L.; Xu, D.; Zhuo, P.; et al. Investigation of COVID-19-related symptoms based on factor analysis. Ann. Palliat. Med. 2020, 9, 1851–1858. [Google Scholar] [CrossRef]
- Sakaida, T.; Tanimoto, I.; Matsubara, A.; Nakamura, M.; Morita, A. Unique skin manifestations of COVID-19: Is drug eruption specific to COVID-19? J. Dermatol. Sci. 2020, 99, 62–64. [Google Scholar] [CrossRef]
- Ansari, R.; Gheitani, M.; Heidari, F.; Heidari, F. Oral cavity lesions as a manifestation of the novel virus (COVID-19). Oral Dis. 2020. [Google Scholar] [CrossRef]
- Chaux-Bodard, A.G.; Deneuve, S.; Desoutter, A. Oral manifestation of Covid-19 as an inaugural symptom? J. Oral Med. Oral Surg. 2020, 26, 18. [Google Scholar] [CrossRef]
- Soares, C.D.; Carvalho, R.A.; Carvalho, K.A.; Carvalho, M.G.; Almeida, O.P. Letter to Editor: Oral lesions in a patient with Covid-19. Med. Oral Patol. Oral Cir. Bucal. 2020, 25, e563–e564. [Google Scholar] [CrossRef] [PubMed]
- Cebeci Kahraman, F.; Çaşkurlu, H. Mucosal involvement in a COVID-19-positive patient: A case report. Dermatol. Ther. 2020, 33, e13797. [Google Scholar] [CrossRef] [PubMed]
- Amorim dos Santos, J.; Normando, A.G.C.; Carvalho da Silva, R.L.; De Paula, R.M.; Cembranel, A.C.; Santos-Silva, A.R.; Guerra, E.N.S. Oral mucosal lesions in a COVID-19 patient: New signs or secondary manifestations? Int. J. Infect. Dis. 2020, 97, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Martín Carreras-Presas, C.; Amaro Sánchez, J.; López-Sánchez, A.F.; Jané-Salas, E.; Somacarrera Pérez, M.L. Oral vesiculobullous lesions associated with SARS-CoV-2 infection. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Putra, B.E.; Adiarto, S.; Dewayanti, S.R.; Juzar, D.A. Viral exanthem with “Spins and needles sensation” on extremities of a COVID-19 patient: A self-reported case from an Indonesian medical frontliner. Int. J. Infect. Dis. 2020, 96, 355–358. [Google Scholar] [CrossRef]
- Díaz Rodríguez, M.; Jimenez Romera, A.; Villarroel, M. Oral manifestations associated with COVID-19. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Corchuelo, J.; Ulloa, F.C. Oral manifestations in a patient with a history of asymptomatic COVID-19: Case report. Int. J. Infect. Dis. 2020, 100, 154–157. [Google Scholar] [CrossRef]
- Al-Khanati, N.M.; Riad, A.; Sahloul, M.E.; Klugar, M. Aphthous-like stomatitis of COVID-19 patients: Case report and review of evidence. Braz. J. Oral Sci. 2020, 19, e201354. [Google Scholar] [CrossRef]
- Brandão, T.B.; Gueiros, L.A.; Melo, T.S.; Prado-Ribeiro, A.C.; Nesrallah, A.C.F.A.; Prado, G.V.B.; Santos-Silva, A.R.; Migliorati, C.A. Oral lesions in patients with SARS-CoV-2 infection: Could the oral cavity be a target organ? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 131, e45–e51. [Google Scholar] [CrossRef]
- Iranmanesh, B.; Khalili, M.; Amiri, R.; Zartab, H.; Aflatoonian, M. Oral manifestations of COVID-19 disease: A review article. Dermatol. Ther. 2020, e14578. [Google Scholar] [CrossRef]
- Chern, A.; Famuyide, A.O.; Moonis, G.; Lalwani, A.K. Sialadenitis: A possible early manifestation of COVID-19. Laryngoscope 2020, 130, 2595–2597. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chetrit, A.; Chekkoury-Idrissi, Y.; Distinguin, L.; Circiu, M.; Saussez, S.; Berradja, N.; Edjlali, M.; Hans, S.; Carlier, R. Parotitis-like symptoms associated with COVID-19, France, March–April 2020. Emerg. Infect. Dis. 2020, 26, 2270–2271. [Google Scholar] [CrossRef]
- Capaccio, P.; Pignataro, L.; Corbellino, M.; Popescu-Dutruit, S.; Torretta, S. Acute parotitis: A possible precocious clinical manifestation of SARS-CoV-2 infection? Otolaryngol. Head Neck Surg. 2020, 163, 182–183. [Google Scholar] [CrossRef]
- Riad, A.; Kassem, I.; Hockova, B.; Badrah, M.; Klugar, M. Halitosis in COVID-19 patients. Spec. Care Dentist. 2020. [Google Scholar] [CrossRef]
- Lo Giudice, R. The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in dentistry. Management of biological risk in dental practice. Int. J. Environ. Res. Public Health 2020, 17, 3067. [Google Scholar] [CrossRef]
- Cirillo, N. COVID-19 outbreak: Succinct advice for dentists and oral healthcare professionals. Clin. Oral Investig. 2020, 24, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Fujisawa, S.; Nakakubo, S.; Kamada, K.; Yamashita, Y.; Fukumoto, T.; Sato, K.; Oguri, S.; Taki, K.; Senjo, H.; et al. Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. J. Infect. 2020, 81, e145–e147. [Google Scholar] [CrossRef] [PubMed]
- Yokota, I.; Shane, P.Y.; Okada, K.; Unoki, Y.; Yang, Y.; Inao, T.; Sakamaki, K.; Iwasaki, S.; Hayasaka, K.; Sugita, J.; et al. Mass screening of asymptomatic persons for SARS-CoV-2 using saliva. Clin. Infect. Dis. 2020, ciaa1388. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.F.; Rasubala, L.; Malmstrom, H.; Eliav, E. Dental care and oral health under the clouds of COVID-19. JDR Clin. Trans. Res. 2020, 5, 202–210. [Google Scholar] [CrossRef] [PubMed]
Subjects | Severity of Disease | Country or Ethnicity | Number of Patients | Mean or Median Age (Range) | Male (%) | Assessment Method | Symptom | Prevalence (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Hospitalized patients diagnosed according to the official guideline and by SARS-CoV-2 nucleic acid detection | Mild to critical | China | 108 | 52.0 (one patient excluded) | 48.1 | Self-reported questionnaire | Dry mouth | 46.3 | Chen et al. [9] * |
Ambulatory non-hospitalized patients (quarantined in hotel) diagnosed by RT-PCR test | Mild | Israel | 128 | 36.3 (18–73) | 45.3 | Self-reported web-based questionnaire | Xerostomia | 56.3 | Biadsee et al. [65] * |
Patients diagnosed by RT-PCR test | NS | European 88% Asian 12% | 50 | 37.7 (18–65) | 60.0 | Self-reported questionnaire | Xerostomia | 32.0 | Freni et al. [80] * |
Patients diagnosed by real-time RT-PCR test | NS | Italy | 111 | 57 (48–67) | 52.3 | Self-reported questionnaire to rate xerostomia scores | Xerostomia | 45.9 | Fantozzi et al. [112] * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, H. Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review. Dent. J. 2021, 9, 32. https://doi.org/10.3390/dj9030032
Tsuchiya H. Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review. Dentistry Journal. 2021; 9(3):32. https://doi.org/10.3390/dj9030032
Chicago/Turabian StyleTsuchiya, Hironori. 2021. "Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review" Dentistry Journal 9, no. 3: 32. https://doi.org/10.3390/dj9030032
APA StyleTsuchiya, H. (2021). Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review. Dentistry Journal, 9(3), 32. https://doi.org/10.3390/dj9030032