A Crosstalk Between Periodontal Disease and Human Immunodeficiency Virus: Application of Artificial Intelligence and Machine Learning in Risk Assessment and Diagnosis—A Narrative Review
Abstract
1. Introduction
1.1. Global and Epidemiologic Context
1.2. Rationale and Objective
2. Materials and Methods
3. Etiology of Periodontal Disease
3.1. Social Determinants
3.2. Sex Bias and Hormonal Influence
3.3. Ethnicity Variations
3.4. Classification of Periodontal Diseases
4. Human Immunodeficiency Virus Infection (HIV)
4.1. Etiology of HIV Infection
4.2. Management of HIV
4.3. Administration of Medications in HIV-1
HAART Therapy
- Improve quality of life (QOL)
- Reduce plasma viral RNA load.
- In Acquired immune deficiency syndrome and non-AIDS cases, reduce morbidity and mortality.
- Prevent transmission to others such as needle sharing partners, sex partners and mother to infant.
- Improve immune function and
- Prevent drug resistance
4.4. Evaluation
4.5. HIV-1 and Periodontal Disease
4.6. How Is Antiretroviral Treatment Associated with Periodontal Inflammation and HIV-1?
4.7. Molecular and Cellular Events in PD With or Without HIV-1 Infection (With or Without ART) Compared to Healthy State
4.8. Genomic Medicine in Periodontal Disease and HIV-1
5. Diagnostic and Biomarker-Based Approaches in Periodontal Disease and HIV
5.1. Conventional Clinical Assessment
5.2. Emerging Point-of-Care Diagnostics
5.2.1. Electronic Taste Chips
5.2.2. Integrated Microfluidic Platform for Oral Diagnostics (IMPOD)
5.3. Molecular Biomarkers
5.3.1. Matrix Metalloproteinases (MMPs)
5.3.2. RANK/RANKL/OPG Interactions
5.4. Multi-Omics Biomarker Discovery
5.5. Proteomic and Metabolomic Insights
6. Artificial Intelligence/Machine Learning in Periodontal Disease & HIV
6.1. Artificial Intelligence in Periodontal Disease and HIV
6.2. Predictive Analytics from Routine Chair-Side Data
6.3. Transformer-Based Natural-Language Processing (NLP) and Deep Learning Radiology Pipelines
6.4. Explainability and Validation in AI/ML for Periodontal Disease and HIV-1
AI/ML Ethics and Governance: Clinical and Professional Implications
6.5. How Does Artificial Intelligence Help in Academic Clinical Setting?
6.6. Improving Periodontal Disease Diagnosis and Management with AI
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stover, J.; Glaubius, R.; Teng, Y.; Kelly, S.; Brown, T.; Hallett, T.B.; Revill, P.; Barnighausen, T.; Phillips, A.N.; Fontaine, C.; et al. Modeling the epidemiological impact of the UNAIDS 2025 targets to end AIDS as a public health threat by 2030. PLoS Med. 2021, 18, e1003831. [Google Scholar] [CrossRef]
- Anonymous. HIV Surveillance Supplemental Report: Estimated HIV Incidence and Prevalence in the United States, 2018–2022; CDC Stacks: Canberra, Australia, 2024.
- Valian, N.K.; Houshmand, B.; Ardakani, M.T.; Mahmoudi, S. Microbiological Study of Periodontal Disease in Populations with HIV: A Systematic Review and Meta-Analysis. Clin. Lab. 2023, 69, 863–873. [Google Scholar] [CrossRef]
- Pereira, L.L.; Veiga Siqueira Amorim, D.; Brito Sampaio, W.; Almeida Cruz Azevedo, T.; Bispo Pereira Cardoso, V.; Barreto Lemos, F.; Silva Chang, A.; Machado, F.; Pereira Lima, F.; Sampaio Neves, F.; et al. Factors Associated with Periodontitis in Patients with and without HIV. Int. J. Dent. 2023, 2023, 9929835. [Google Scholar] [CrossRef]
- Ponce, P.N.O.; Chaves, L.B.; Perce-da-Silva, D.S.; Carneiro-Alencar, A.L.; Rodolphi, C.M.; Soares, I.F.; Rodrigues-da-Silva, R.N.; Alves-da-Silva, A.C.; Marques, F.V.; Peres, R.V.; et al. Periodontal Health in Individuals Living with HIV: An Exploratory and Descriptive Molecular Approach of Microbial Interspecific and Intraspecific Diversity in Brazilian Patients. Microorganisms 2025, 13, 867. [Google Scholar] [CrossRef]
- Eke, P.I.; Wei, L.; Borgnakke, W.S.; Thornton-Evans, G.; Zhang, X.; Lu, H.; McGuire, L.C.; Genco, R.J. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontol. 2000 2016, 72, 76–95. [Google Scholar]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- DeVore, S.; Zhou, M. The Impact of HIV Infection and Aging on Periodontitis. Oral 2025, 5, 64. [Google Scholar] [CrossRef]
- Tebcherany, H.; Rogers, T.; Khocht, A. Alveolar bone loss is a significant contributor to tooth loss in dentate HIV+ patients: A retrospective study. Spec. Care Dent. 2024, 44, 1770–1780. [Google Scholar] [CrossRef]
- Souza, A.J.; Gomes-Filho, I.S.; Silva, C.; Passos-Soares, J.S.; Cruz, S.S.D.; Trindade, S.C.; Figueiredo, A.; Buischi, Y.P.; Seymour, G.J.; Cerqueira, E.M.M. Factors associated with dental caries, periodontitis and intra-oral lesions in individuals with HIV/AIDS. AIDS Care 2018, 30, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Skelton, M.; Callahan, C.; Levit, M.; Finn, T.; Kister, K.; Matsumura, S.; Cantos, A.; Shah, J.; Wadhwa, S.; Yin, M. Men with HIV Have Increased Alveolar Bone Loss. Res. Sq. 2024, 24, 1248. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Meeks, V. The influence of antiretroviral therapy on HIV-related oral manifestations. J. Natl. Med. Assoc. 2021, 113, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ryder, M.I.; Shiboski, C.; Yao, T.J.; Moscicki, A.B. Current trends and new developments in HIV research and periodontal diseases. Periodontol. 2000 2020, 82, 65–77. [Google Scholar] [CrossRef]
- Ridgeway, E.E. Periodontal disease: Diagnosis and management. J. Am. Acad. Nurse Pract. 2000, 12, 79–84. [Google Scholar] [CrossRef]
- Ottria, L.; Lauritano, D.; Oberti, L.; Candotto, V.; Cura, F.; Tagliabue, A.; Tettamanti, L. Prevalence of HIV-related oral manifestations and their association with HAART and CD4+ T cell count: A review. J. Biol. Regul. Homeost. Agents 2018, 32, 51–59. [Google Scholar]
- Clark, D.; Kotronia, E.; Ramsay, S.E. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol. 2000 2021, 87, 143–156. [Google Scholar] [CrossRef]
- Gasner, N.S.; Schure, R.S. Periodontal Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bartold, P.M.; Van Dyke, T.E. An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis. J. Clin. Periodontol. 2019, 46, 6–11. [Google Scholar] [CrossRef]
- Desai, J.P.; Nair, R.U. Oral Health Factors Related to Rapid Oral Health Deterioration among Older Adults: A Narrative Review. J. Clin. Med. 2023, 12, 3202. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Lasica, A.; Golec, P.; Laskus, A.; Zalewska, M.; Gedaj, M.; Popowska, M. Periodontitis: Etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front. Microbiol. 2024, 15, 1469414. [Google Scholar] [CrossRef] [PubMed]
- Albandar, J.M. Disparities and social determinants of periodontal diseases. Periodontol. 2000 2024, 1–13. [Google Scholar] [CrossRef]
- Tellez, M.; Zini, A.; Estupiñan-Day, S. Social Determinants and Oral Health: An Update. Curr. Oral Health Rep. 2014, 1, 148–152. [Google Scholar] [CrossRef]
- Borrell, L.N.; Burt, B.A.; Neighbors, H.W.; Taylor, G.W. Social factors and periodontitis in an older population. Am. J. Public Health 2008, 98, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Boyapati, R.; Cherukuri, S.A.; Bodduru, R.; Kiranmaye, A. Influence of Female Sex Hormones in Different Stages of Women on Periodontium. J. Midlife Health 2021, 12, 263–266. [Google Scholar] [CrossRef]
- Kornman, K.S.; Loesche, W.J. The subgingival microbial flora during pregnancy. J. Periodontal Res. 1980, 15, 111–122. [Google Scholar] [CrossRef]
- Khosla, S.; Amin, S.; Orwoll, E. Osteoporosis in men. Endocr Rev. 2008, 29, 441–464. [Google Scholar] [CrossRef]
- Borrell, L.N.; Talih, M. Examining periodontal disease disparities among U.S. adults 20 years of age and older: NHANES III (1988–1994) and NHANES 1999–2004. Public Health Rep. 2012, 127, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Dye, B.A.; Herrera-Abreu, M.; Pikdoken, L.; Lerche-Sehm, J.; Pretzl, B.; Celenti, R.; Papapanou, P.N. Determinants of serum IgG responses to periodontal bacteria in a nationally representative sample of US adults. J. Clin. Periodontol. 2010, 37, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y.; Burgardt, G.; Parthasarathy, K.; Ho, D.K.; Weltman, R.L.; Tribble, G.D.; Hong, J.; Cron, S.; Xie, H. Influences of race/ethnicity in periodontal treatment response and bacterial distribution, a cohort pilot study. Front. Oral Health 2023, 4, 1212728. [Google Scholar] [CrossRef]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef]
- Babay, N.; Alshehri, F.; Al Rowis, R. Majors highlights of the new 2017 classification of periodontal and peri-implant diseases and conditions. Saudi Dent. J. 2019, 31, 303–305. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Muwonga, J. OraQuick ADVANCE Rapid HIV-1/2 antibody test. Expert. Rev. Mol. Diagn. 2004, 4, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Donovan, B.J.; Rublein, J.C.; Leone, P.A.; Pilcher, C.D. HIV infection: Point-of-care testing. Ann. Pharmacother. 2004, 38, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Saxena, D.; Chen, Z.; Liu, G.; Abrams, W.R.; Phelan, J.A.; Norman, R.G.; Fisch, G.S.; Corby, P.M.; Dewhirst, F.; et al. HIV infection and microbial diversity in saliva. J. Clin. Microbiol. 2014, 52, 1400–1411. [Google Scholar] [CrossRef]
- Mayer, K.H.; Mimiaga, M.J.; Gelman, M.; Grasso, C. Raltegravir, tenofovir DF, and emtricitabine for postexposure prophylaxis to prevent the sexual transmission of HIV: Safety, tolerability, and adherence. J. Acquir. Immune Defic. Syndr. 2012, 59, 354–359. [Google Scholar] [CrossRef]
- Goncalves, L.S.; de Carvalho Ferreira, D.; Vidal, F.; Souza, R.C.; Goncalves, C.; Pavan, P.; Carrouel, F.; Bourgeois, D.; Seymour, G.J. Stage II and stage III periodontitis clinical burdens of HIV-1 undergoing antiretroviral therapy. Clin. Oral Investig. 2022, 26, 2187–2195. [Google Scholar] [CrossRef]
- World Health Organization [WHO]. HIV Data and Statistics; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Srivastava, N.; Nayak, P.A.; Rana, S. Point of Care- A Novel Approach to Periodontal Diagnosis-A Review. J. Clin. Diagn. Res. 2017, 11, ZE01–ZE06. [Google Scholar] [CrossRef]
- Marin, R.C.; Behl, T.; Negrut, N.; Bungau, S. Management of Antiretroviral Therapy with Boosted Protease Inhibitors-Darunavir/Ritonavir or Darunavir/Cobicistat. Biomedicines 2021, 9, 313. [Google Scholar] [CrossRef]
- Xiao, T.; Cai, Y.; Chen, B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021, 13, 735. [Google Scholar] [CrossRef]
- De La Torre Tarazona, E.; Passaes, C.; Moreno, S.; Saez-Cirion, A.; Alcami, J. High concentrations of Maraviroc do not alter immunological and metabolic parameters of CD4 T cells. Sci. Rep. 2024, 14, 13980. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R.; Hughes, S.H. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Beccari, M.V.; Mogle, B.T.; Sidman, E.F.; Mastro, K.A.; Asiago-Reddy, E.; Kufel, W.D. Ibalizumab, a Novel Monoclonal Antibody for the Management of Multidrug-Resistant HIV-1 Infection. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Bruzzesi, E.; Muccini, C.; Castagna, A. Pharmacokinetic evaluation of bictegravir + emtricitabine + tenofovir alafenamide in HIV treatment. Expert Opin. Drug Metab. Toxicol. 2024, 21, 229–236. [Google Scholar] [CrossRef]
- Swinkels, H.M.; Nguyen, A.D.; Gulick, P.G. HIV and AIDS; National Library of Medicine: Bethesda, MD, USA, 2024.
- Naik, R.; Justiz, V.; Angel, A. HIV-1–Associated Opportunistic Infections; National Library of Medicine: Bethesda, MD, USA, 2023.
- Kemnic TR, G.P. HIV Antiretroviral Therapy; National Library of Medicine: Bethesda, MD, USA, 2022.
- Eggleton, J.S.; Nagalli, S. Highly Active Antiretroviral Therapy (HAART). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Glass, T.; Myer, L.; Lesosky, M. The role of HIV viral load in mathematical models of HIV transmission and treatment: A review. BMJ Glob. Health 2020, 5, e001800. [Google Scholar] [CrossRef]
- Bui, F.Q.; Almeida-da-Silva, C.L.C.; Huynh, B.; Trinh, A.; Liu, J.; Woodward, J.; Asadi, H.; Ojcius, D.M. Association between periodontal pathogens and systemic disease. Biomed. J. 2019, 42, 27–35. [Google Scholar] [CrossRef]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.; Fabi, A.; Cognetti, F.; Gorini, S.; Caprio, M.; Fabbri, A. RANKL/RANK/OPG system beyond bone remodeling: Involvement in breast cancer and clinical perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 12. [Google Scholar] [CrossRef]
- Loos, B.G.; Van Dyke, T.E. The role of inflammation and genetics in periodontal disease. Periodontol. 2000 2020, 83, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Checchi, V.; Maravic, T.; Bellini, P.; Generali, L.; Consolo, U.; Breschi, L.; Mazzoni, A. The Role of Matrix Metalloproteinases in Periodontal Disease. Int. J. Environ. Res. Public. Health 2020, 17, 4923. [Google Scholar] [CrossRef]
- Qasim, S.S.B.; Al-Otaibi, D.; Al-Jasser, R.; Gul, S.S.; Zafar, M.S. An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int. J. Mol. Sci. 2020, 21, 3829. [Google Scholar] [CrossRef]
- Fricke, U.; Geurtsen, W.; Staufenbiel, I.; Rahman, A. Periodontal status of HIV-infected patients undergoing antiretroviral therapy compared to HIV-therapy naive patients: A case control study. Eur. J. Med. Res. 2012, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Ntolou, P.; Pani, P.; Panis, V.; Madianos, P.; Vassilopoulos, S. The effect of antiretroviral therapyon the periodontal conditions of patients with HIV infection: A systematic review and meta-analysis. J. Clin. Periodontol. 2023, 50, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Santonocito, S.; Alibrandi, A.; Williams, R.C. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J. Periodontol. 2022, 93, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Afzali, H.; Graves, D.T. An update on periodontal inflammation and bone loss. Front. Immunol. 2024, 15, 1385436. [Google Scholar] [CrossRef]
- Patel, P.H.; Zulfiqar, H. Reverse Transcriptase Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bhaskaran, N.; Schneider, E.; Faddoul, F.; Paes da Silva, A.; Asaad, R.; Talla, A.; Greenspan, N.; Levine, A.D.; McDonald, D.; Karn, J.; et al. Oral immune dysfunction is associated with the expansion of FOXP3(+)PD-1(+)Amphiregulin(+) T cells during HIV infection. Nat. Commun. 2021, 12, 5143. [Google Scholar] [CrossRef] [PubMed]
- How, K.Y.; Song, K.P.; Chan, K.G. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front. Microbiol. 2016, 7, 53. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Lamont, R.J. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol. 2000 2021, 86, 210–230. [Google Scholar] [CrossRef]
- Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. J. Fam. Med. Prim. Care 2019, 8, 3480–3486. [Google Scholar] [CrossRef]
- Popova, C.; Dosseva-Panova, V.; Panov, V. Microbiology of Periodontal Diseases. A Review. Biotechnol. Biotechnol. Equip. 2013, 27, 3754–3759. [Google Scholar] [CrossRef]
- Shaikh, H.F.M.; Patil, S.H.; Pangam, T.S.; Rathod, K.V. Polymicrobial synergy and dysbiosis: An overview. J. Indian Soc. Periodontol. 2018, 22, 101–106. [Google Scholar] [CrossRef]
- Williams, D.M.; Sheiham, A.; Watt, R.G. Oral health professionals and social determinants. Br. Dent. J. 2013, 214, 427. [Google Scholar] [CrossRef]
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef]
- Rozman, M.; Zidovec-Lepej, S.; Jambrosic, K.; Babic, M.; Drmic Hofman, I. Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Pathogens 2023, 12, 92. [Google Scholar] [CrossRef]
- Pattan, V.; Kashyap, R.; Bansal, V.; Candula, N.; Koritala, T.; Surani, S. Genomics in medicine: A new era in medicine. World J. Methodol. 2021, 11, 231–242. [Google Scholar] [CrossRef]
- Barlas, S. Precision medicine initiative aims for a new generation of diagnostics and treatments: But is the promise of genetic targeting overinflated? P T 2015, 40, 340–352. [Google Scholar]
- Camlet, A.; Kusiak, A.; Ossowska, A.; Swietlik, D. Advances in Periodontal Diagnostics: Application of MultiModal Language Models in Visual Interpretation of Panoramic Radiographs. Diagnostics 2025, 15, 1851. [Google Scholar] [CrossRef]
- Jacobs, R.; Fontenele, R.C.; Lahoud, P.; Shujaat, S.; Bornstein, M.M. Radiographic diagnosis of periodontal diseases—Current evidence versus innovations. Periodontol. 2000 2024, 95, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Ramenzoni, L.L.; Lehner, M.P.; Kaufmann, M.E.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Oral Diagnostic Methods for the Detection of Periodontal Disease. Diagnostics 2021, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Christodoulides, N.; Tran, M.; Floriano, P.N.; Rodriguez, M.; Goodey, A.; Ali, M.; Neikirk, D.; McDevitt, J.T. A microchip-based multianalyte assay system for the assessment of cardiac risk. Anal. Chem. 2002, 74, 3030–3036. [Google Scholar] [CrossRef]
- Patil, P.B.; Patil, B.R. Saliva: A diagnostic biomarker of periodontal diseases. J. Indian Soc. Periodontol. 2011, 15, 310–317. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, A.R.; Elashiry, M.; Morandini, A.C.; Meghil, M.M.; Cutler, C.W. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol. 2000 2022, 89, 41–50. [Google Scholar] [CrossRef]
- Gibertoni, F.; Sommer, M.E.L.; Esquisatto, M.A.M.; Amaral, M.; Oliveira, C.A.; Andrade, T.A.M.; Mendonca, F.A.S.; Santamaria, M., Jr.; Felonato, M. Evolution of Periodontal Disease: Immune Response and RANK/RANKL/OPG System. Braz. Dent. J. 2017, 28, 679–687. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X.; Cui, L.; Huang, S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front. Microbiol. 2021, 12, 728585. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Li, H.; Liu, R.; Cai, C.; Liu, Y.; Li, J.; Wang, X.; Huang, S.; Wu, L.; Liu, D.; et al. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep. Med. 2023, 4, 101213. [Google Scholar] [CrossRef]
- Scott, J.; Biancardi, A.M.; Jones, O.; Andrew, D. Artificial Intelligence in Periodontology: A Scoping Review. Dent. J. 2023, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.K.; Stalin, S.; Joshi, S.; Pareek, P.K. Optimization assisted bidirectional gated recurrent unit for healthcare monitoring system in big-data. Appl. Soft Comput. 2023, 138, 110178. [Google Scholar] [CrossRef]
- Danks, R.P.; Bano, S.; Orishko, A.; Tan, H.J.; Moreno Sancho, F.; D’Aiuto, F.; Stoyanov, D. Automating Periodontal bone loss measurement via dental landmark localisation. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1189–1199. [Google Scholar] [CrossRef]
- Ferrara, E.; Rapone, B.; D’aLbenzio, A. Applications of deep learning in periodontal disease diagnosis and management: A systematic review and critical appraisal. J. Med. Artif. Intell. 2025, 8, 23. [Google Scholar] [CrossRef]
- Goma, S.T.A.A.J.C.d. Detecting Periodontal Disease Using Convolutional Neural Networks. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November 2018; IEEE: Baguio City, Philippines, 2018. [Google Scholar]
- Feher, B.; de Souza Oliveira, E.H.; Mendes Duarte, P.; Werdich, A.A.; Giannobile, W.V.; Feres, M. Machine learning-assisted prediction of clinical responses to periodontal treatment. J. Periodontol. 2025, 96, 1199–1212. [Google Scholar] [CrossRef]
- Enevold, C.; Nielsen, C.H.; Christensen, L.B.; Kongstad, J.; Fiehn, N.E.; Hansen, P.R.; Holmstrup, P.; Havemose-Poulsen, A.; Damgaard, C. Suitability of machine learning models for prediction of clinically defined Stage III/IV periodontitis from questionnaires and demographic data in Danish cohorts. J. Clin. Periodontol. 2024, 51, 1561–1573. [Google Scholar] [CrossRef]
- Jundaeng, J.; Chamchong, R.; Nithikathkul, C. Artificial intelligence-powered innovations in periodontal diagnosis: A new era in dental healthcare. Front. Med. Technol. 2024, 6, 1469852. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant. Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Linna, N.; Kahn, C.E., Jr. Applications of natural language processing in radiology: A systematic review. Int. J. Med. Inform. 2022, 163, 104779. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Tong, E.; Li, A.; Yamin, G.; Zaharchuk, G.; Mofrad, M.R.K. Exploring the performance and explainability of fine-tuned BERT models for neuroradiology protocol assignment. BMC Med. Inform. Decis. Mak. 2024, 24, 40. [Google Scholar] [CrossRef]
- Nakano, Y.; Suzuki, N.; Kuwata, F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC Oral Health 2018, 18, 128. [Google Scholar] [CrossRef]
- Pethani, F.; Dunn, A.G. Natural language processing for clinical notes in dentistry: A systematic review. J. Biomed. Inform. 2023, 138, 104282. [Google Scholar] [CrossRef] [PubMed]
- Khubrani, Y.H.; Thomas, D.; Slator, P.J.; White, R.D.; Farnell, D.J.J. Detection of periodontal bone loss and periodontitis from 2D dental radiographs via machine learning and deep learning: Systematic review employing APPRAISE-AI and meta-analysis. Dentomaxillofac. Radiol. 2025, 54, 89–108. [Google Scholar] [CrossRef]
- Ameli, N.; Firoozi, T.; Gibson, M.; Lai, H. Classification of periodontitis stage and grade using natural language processing techniques. PLoS Digit. Health 2024, 3, e0000692. [Google Scholar] [CrossRef]
- Kot, W.Y.; Au Yeung, S.Y.; Leung, Y.Y.; Leung, P.H.; Yang, W.F. Evolution of deep learning tooth segmentation from CT/CBCT images: A systematic review and meta-analysis. BMC Oral Health 2025, 25, 800. [Google Scholar] [CrossRef]
- Pais, R.J.; Botelho, J.; Machado, V.; Alcoforado, G.; Mendes, J.J.; Alves, R.; Bessa, L.J. Exploring AI-Driven Machine Learning Approaches for Optimal Classification of Peri-Implantitis Based on Oral Microbiome Data: A Feasibility Study. Diagnostics 2025, 15, 425. [Google Scholar] [CrossRef]
- Pawar, A.R.; Malaiappan, S.; Yadalam, P.K.; Ganesh, P.R. Evaluation of the predictors of tooth loss using artificial intelligence-based machine learning approach: A retrospective study. J. Indian Soc. Periodontol. 2025, 29, 42–48. [Google Scholar] [CrossRef]
- Sameer, S.; Karthik, J.; Teja, M.S.; Vardhan, P.A. Estimation of Periodontal Bone Loss Using SVM and Random Forest. In Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 3–5 March 2023; IEEE: Bangalore, India, 2023. [Google Scholar]
- Feng, Y.; Chen, Z.; Tu, S.Q.; Wei, J.M.; Hou, Y.L.; Kuang, Z.L.; Kang, X.N.; Ai, H. Role of Interleukin-17A in the Pathomechanisms of Periodontitis and Related Systemic Chronic Inflammatory Diseases. Front. Immunol. 2022, 13, 862415. [Google Scholar] [CrossRef]
- Beall, C.J.; Lilly, E.A.; Granada, C.; Treas, K.; Dubois, K.R., 3rd; Hashmi, S.B.; Vazquez, J.A.; Hagensee, M.E.; Griffen, A.L.; Leys, E.J.; et al. Independent Effects of HIV and Antiretroviral Therapy on the Oral Microbiome Identified by Multivariate Analyses. mBio 2023, 14, e0040923. [Google Scholar] [CrossRef]
- Vani, M.S.; Sudhakar, R.V.; Mahendar, A.; Ledalla, S.; Radha, M.; Sunitha, M. Personalized health monitoring using explainable AI: Bridging trust in predictive healthcare. Sci. Rep. 2025, 15, 31892. [Google Scholar] [CrossRef]
- Davidson, E.M.; Poon, M.T.C.; Casey, A.; Grivas, A.; Duma, D.; Dong, H.; Suarez-Paniagua, V.; Grover, C.; Tobin, R.; Whalley, H.; et al. The reporting quality of natural language processing studies: Systematic review of studies of radiology reports. BMC Med. Imaging 2021, 21, 142. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef] [PubMed]
- Munusamy, S.; Jothi, K.R. Blockchain-enabled federated learning with edge analytics for secure and efficient electronic health records management. Sci. Rep. 2025, 15, 27524. [Google Scholar] [CrossRef] [PubMed]
- Morch, C.M.; Atsu, S.; Cai, W.; Li, X.; Madathil, S.A.; Liu, X.; Mai, V.; Tamimi, F.; Dilhac, M.A.; Ducret, M. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J. Dent. Res. 2021, 100, 1452–1460. [Google Scholar] [CrossRef]
- Roy, R.; Chopra, A.; Karmakar, S.; Bhat, S.G. Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review. J. Oral Rehabil. 2025, 52, 1193–1219. [Google Scholar] [CrossRef]
- Reddy, S.; Allan, S.; Coghlan, S.; Cooper, P. A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 2020, 27, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Jacob, G.; Singh, A.; Khan, S.; Dhir, P.; Kakarla, G. Artificial Intelligence in dentistry: Balancing innovation with ethical responsibility. Bioinformation 2025, 21, 489–494. [Google Scholar] [CrossRef]
- Goncalves-Anjo, N.; Requicha, J.; Teixeira, A.; Dias, I.; Viegas, C.; Bastos, E. Genomic Medicine in Periodontal Disease: Old Issue, New Insights. J. Vet. Dent. 2022, 39, 314–322. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef]
- Balaei, A.T.; Chazal, P.d.; Eberhard, J.; Domnisch, H.; Spahr, A.; Ruiz, K. Automatic detection of periodontitis using intra-oral images. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 3906–3909. [Google Scholar]
- Feres, M.; Louzoun, Y.; Haber, S.; Faveri, M.; Figueiredo, L.C.; Levin, L. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. Int. Dent. J. 2018, 68, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Yauney, G.; Wong, L.C.; Gupta, O.; Muftu, A.; Shah, P. Automated segmentation of gingival diseases from oral images. In Proceedings of the 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; IEEE: Bethesda, MD, USA, 2017. [Google Scholar]
- Ozden, F.O.; Ozgonenel, O.; Ozden, B.; Aydogdu, A. Diagnosis of periodontal diseases using different classification algorithms: A preliminary study. Niger. J. Clin. Pract 2015, 18, 416–421. [Google Scholar] [CrossRef] [PubMed]


| Individual Risk Factors | Local Risk Factors | |
|---|---|---|
| Modifiable Risk Factors | Non-Modifiable Risk Factors | |
| Smoking | Age | Root proximity |
| Diabetes | Genetics | Enamel pearls and cemento-enamel projections |
| Obesity | Gender | Tooth malposition |
| Others such as stress, osteoporosis, alcohol consumption, nutritional deficiencies | Ethnicity | Root abnormalities such as palate-radicular grooves, cemental tears Uncommon factors such as sub-gingival restorations and open contacts |
| Non-Modifiable Risk Factors | Modifiable Risk Factors |
|---|---|
| Race | Sexual behavior |
| Ethnicity | Needle sharing |
| Economic and gender disparities | Untreated HIV-1 infection, metabolic syndrome, hypertension and obesity |
| Class of HIV-I Medications | Mode of Action | Refs. |
|---|---|---|
| Nucleoside reverse transcriptase inhibitors | NRTIs compete with natural deoxynucleotides for incorporation into a growing viral DNA chain. These NTRI’s include Abacavir, lamivudine emtricitabine, zidovudine and tenofovir disoproxil fumarate. | [39] |
| Non- Nucleoside reverse transcriptase inhibitors | These inhibitors act by binding to reverse transcriptase (RT) directly, NNRTIs inhibit this enzyme. Despite not being integrated into the viral DNA, NNRTIs prevent RT protein domains from moving, which is necessary for completing DNA synthesis. These include Efavirenz, etravirine, nevirapine, rilpivirine. | [37] |
| Protease Inhibitors | These bind to HIV-1 protease and block proteolytic cleavage of protein precursors necessary for producing viral particles. These include Atazanavir, darunavir, fosamprenavir, ritonavir, saquinavir, and tipranavir. | [40] |
| Fusion Inhibitors | Fusion inhibitors disrupt binding, fusion, and entry of HIV-1 virions into a human cell. Enfuvirtide binds to gp41 and disrupts membrane attachment. | [41] |
| Chemokine receptor 5 (CCR5) Antagonist | Maraviroc, a CCR5 antagonist, blocks the CCR5 receptor present on the T-cell to prevent viral attachment. | [42] |
| Integrase Inhibitors | Integrase inhibitors prevent the viral genome from inserting itself into the DNA of a host cell by blocking the action of integrase. | [43] |
| Post-attachment Inhibitors | These are monoclonal antibodies which bind to CD4 and inhibit viral entry into the cell. Ex: Ibalizumab | [44] |
| Pharmacokinetic Enhancers | These enhancers increase the plasma concentration of other HIV-1 drugs by inhibiting human CYP3A protein. HIV -1 patients are given the following regimens which are recommended by medical associations. These include: Tenofovir alafenamide, emtricitabine, and Bictegravir. Dolutegravir (emtricitabine or lamivudine). | [4,39,45] |
| Method | Input Data | Model Type | Performance Metrics | Strengths | Limitations | Relevance to HIV/PD | Refs. |
|---|---|---|---|---|---|---|---|
| Transformer-based NLP (BERT) | Periodontal clinical notes (EHR/EDR) | Fine-tuned transformer (BERT) | Stage accuracy 77%; Grade accuracy 75%; Unseen data: 72% grading, 66% staging | Comparable to periodontal specialists; outperforms non-specialists | Requires large annotated datasets; limited external validation; poor demographic reporting | Could extract HIV-specific oral health details from EHRs; scalable for general practice | [92,93,94] |
| Dental NLP Systematic Review | Published NLP studies in dentistry | Quality assessment indicators | <10% external validation reported | Identifies reporting gaps; guides best practices | Lack of transparency; no code/data sharing; poor reproducibility | Highlights risk of bias in HIV/PD populations if reporting gaps persist | [87,95,97,100] |
| CNN/Vision Transformers | Radiographs (panoramic, periapical) | CNNs, Vision Transformers | Dice coefficients near 1 for tooth/bone segmentation; high staging accuracy | High accuracy; explainable with saliency maps | Needs diverse imaging datasets; device variability | Detects bone loss relevant to HIV-associated PD | [82,97,98] |
| Two-Phase CNN + DNN + SVM Pipeline | Panoramic + periapical radiographs | CNN (screening) → DNN (feature extraction) → SVM (final score) | Robust classification across imaging conditions | Multistage improves reliability; integrates risk factors (age, smoking, HbA1C) | Computationally intensive; requires multiple imaging modalities | Useful for HIV patients with systemic risk factors; enhances PD diagnosis accuracy | [99,101] |
| Sl. No. | Study | Findings | Ref. |
|---|---|---|---|
| 1 | Deep CNN based computer-assisted detection system in the diagnosis and prediction of PCT | PCT was diagnosed with an accuracy of 76.7% for molars and 81% for premolars. | [91] |
| 2 | Differentiating between periodontitis and healthy dental plaque | Accuracy of 78.8% | [87] |
| 3 | Detection of periodontitis for people with limited access to dental personnel and facilities in any healthcare setting | 91.6% accuracy. Useful for people with limited access to dental clinics. | [116] |
| Sl. No. | Study | Findings | Ref. |
|---|---|---|---|
| 1 | Classification of patients into generalized chronic periodontitis generalized aggressive periodontitis, and periodontal health by machine learning using 40 bacterial species | A support vector classifier using 40 bacterial species was useful to differentiate between PH, Ch P, and AgP. The relative bacterial load could distinguish between AgP and ChP. | [117] |
| 2 | A machine learning classifier trained with annotations from dentists gives pixel-wise inflammation segmentations of color-augmented intraoral photos | The classifier differentiates successfully between healthy and inflamed gingiva. The early diagnosis of periodontal diseases given by the classifier using photos acquired by intra-oral imaging devices can be advantageous for dentists and patients. | [118] |
| 3 | Classification of periodontal diseases using artificial neural network, support vector machine, and decision tree. | The decision tree and support vector system showed better accuracy in the classification of periodontal diseases. | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaddam, B.; Alluri, L.S.C.; Amugo, I.; Berta, L.; Butler, M.; Ferguson, S.; Ferguson, A.; Harris, E.; Berthaud, V.; Pratap, S.; et al. A Crosstalk Between Periodontal Disease and Human Immunodeficiency Virus: Application of Artificial Intelligence and Machine Learning in Risk Assessment and Diagnosis—A Narrative Review. Dent. J. 2025, 13, 603. https://doi.org/10.3390/dj13120603
Gaddam B, Alluri LSC, Amugo I, Berta L, Butler M, Ferguson S, Ferguson A, Harris E, Berthaud V, Pratap S, et al. A Crosstalk Between Periodontal Disease and Human Immunodeficiency Virus: Application of Artificial Intelligence and Machine Learning in Risk Assessment and Diagnosis—A Narrative Review. Dentistry Journal. 2025; 13(12):603. https://doi.org/10.3390/dj13120603
Chicago/Turabian StyleGaddam, Bhavyasri, Leela Subhashini C. Alluri, Ihunna Amugo, Lemlem Berta, McKayla Butler, Shania Ferguson, Alexys Ferguson, Ethel Harris, Vladimir Berthaud, Siddharth Pratap, and et al. 2025. "A Crosstalk Between Periodontal Disease and Human Immunodeficiency Virus: Application of Artificial Intelligence and Machine Learning in Risk Assessment and Diagnosis—A Narrative Review" Dentistry Journal 13, no. 12: 603. https://doi.org/10.3390/dj13120603
APA StyleGaddam, B., Alluri, L. S. C., Amugo, I., Berta, L., Butler, M., Ferguson, S., Ferguson, A., Harris, E., Berthaud, V., Pratap, S., Wang, Q., Sampath, C., Khoury, Z. H., & Gangula, P. R. (2025). A Crosstalk Between Periodontal Disease and Human Immunodeficiency Virus: Application of Artificial Intelligence and Machine Learning in Risk Assessment and Diagnosis—A Narrative Review. Dentistry Journal, 13(12), 603. https://doi.org/10.3390/dj13120603

