Erosive Potential of Pediatric Syrup Medications on the Human Enamel: Ex Vivo Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quantitative Light-Induced Fluorescence (QLF) Test
2.3. Surface Profilometry
2.4. pH Measurement Techniques
2.4.1. Direct Measurement
2.4.2. Acid–Base Titration
2.5. Viscosity Measurement
2.6. Statistical Analysis
- -
- Within-group comparisons (T0 vs. T1) were performed using Wilcoxon signed-rank tests.
- -
- Comparisons among syrups were carried out with the Kruskal–Wallis test followed by Dunn’s post hoc test.
- -
- Comparisons between primary and permanent teeth were performed using the Mann–Whitney U test.
- -
- Correlations between physicochemical parameters (pH, titratable acidity/alkalinity, viscosity) and enamel outcomes (ΔF, Sa, Sz) were explored using Spearman’s rank correlation.
3. Results
3.1. Quantitative Light-Induced Fluorescence (QLF)
3.2. Profilometry Analysis
3.3. pH Measurement
3.4. Viscosity Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozdemir, D.H. Dental caries: The most common disease worldwide and preventive strategies. Int. J. Biol. 2013, 5, 55–61. [Google Scholar] [CrossRef]
- Campus, G.; Niu, J.Y.; Sezer, B.; Yu, O.Y. Prevention and management of dental erosion and decay. BMC Oral Health 2024, 24, 468. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Dipalma, G.; Azzollini, D.; Trilli, I.; Carpentiere, V.; Hazballa, D.; Bordea, I.R.; Palermo, A.; Inchingolo, A.D.; Inchingolo, A.M. Advances in preventive and therapeutic approaches for dental erosion: A systematic review. Dent. J. 2023, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.G.; Knight, J.K. A comparison of patterns of tooth wear with aetiological factors. Br. Dent. J. 1984, 157, 16–19. [Google Scholar] [CrossRef]
- Coutinho, L.S.; Sande, A.C.M.N.; Nunes, N.N.V.; Oliveira, R.S.; Campos, E.J.C. Cariogenic and erosive potential of pediatric medicines and vitamin supplements. Rev. Odontol. UNESP 2022, 51, e20220006. [Google Scholar] [CrossRef]
- Singana, T.; Suma, N.K. An in vitro assessment of cariogenic and erosive potential of pediatric liquid medicaments on primary teeth: A comparative study. Int. J. Clin. Pediatr. Dent. 2020, 13, 595–599. [Google Scholar] [CrossRef]
- Aljulayfi, I.; O’Toole, S.; Healy, M.; Sumaidaa, S.; Ali, Z.; Bartlett, D.; Austin, R. The interplay of saliva, erosion and attrition on enamel and dentine. Saudi Dent. J. 2022, 34, 232–236. [Google Scholar] [CrossRef]
- Jung, E.H.; Jun, M.K. Evaluation of the erosive and cariogenic potential of over-the-counter pediatric liquid analgesics and antipyretics. Children 2021, 8, 611. [Google Scholar] [CrossRef]
- Mukundan, D.; Vignesh, R.; Ravindran, V. Comparative evaluation on the effects of three pediatric syrups on microhardness, roughness and staining of primary tooth enamel: An in vitro study. Cureus 2023, 15, e42764. [Google Scholar]
- Maurya, A.; Shashikiran, N.D.; Gaonkar, N.; Gugawad, S.; Taur, S.; Hadakar, S.; Chaudhari, P. Evaluation of change in microhardness by application of MI varnish on primary tooth enamel affected by use of frequently prescribed paediatric syrups: An in vitro study. Cureus 2020, 12, e6533. [Google Scholar] [CrossRef]
- Yılmaz, N.; Baygin, O.; Cakıroglu, T.N.; Tüzüner, T.; Deger, O. In vitro evaluation of the effects of frequently prescribed pediatric drugs on the microhardness of permanent tooth enamel. Dent. Med. Probl. 2019, 56, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.P.; Zakian, C.M.; Pretty, I.A.; Ellwood, R.P. Measuring initial enamel erosion with quantitative light-induced fluorescence and optical coherence tomography: An in vitro validation study. Caries Res. 2014, 48, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Angmar-Månsson, B.; ten Bosch, J.J. Quantitative light-induced fluorescence (QLF): A method for assessment of incipient caries lesions. Dentomaxillofac. Radiol. 2001, 30, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, R.F.; Ávila, D.M.D.S.; Miyamoto, K.M.; Torres, C.R.G.; Borges, A.B. Influence of surfactants and fluoride against enamel erosion. Caries Res. 2019, 53, 1–9. [Google Scholar] [CrossRef]
- Velagala, D.; Reddy, V.N.; Achanta, A.; Snehika, G.; Ramavath, B.N.; Mareddy, R.A. Enamel erosion: A possible preventive approach by casein phosphopeptide amorphous calcium phosphate—An in vitro study. Int. J. Clin. Pediatr. Dent. 2020, 13, 486–492. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; Kandiah, P.; Sukeri, S. The effects of fruit smoothies on enamel erosion. Eur. Arch. Paediatr. Dent. 2014, 15, 175–181. [Google Scholar] [CrossRef]
- Lan, Z.; Zhao, I.S.; Li, J.; Li, X.; Yuan, L.; Sha, O. Erosive effects of commercially available alcoholic beverages on enamel. Dent. Mater. J. 2023, 42, 236–240. [Google Scholar] [CrossRef]
- Mahmoud, E.F.; Omar, O.M. Erosive and cariogenic potential of various pediatric liquid medicaments on primary tooth enamel: A SEM study. Dent. Med. Probl. 2018, 55, 247–254. [Google Scholar] [CrossRef]
- Mahmoud, N.; Elmalt, M.; Mohamed, E. Evaluation of the erosive effect of pediatric liquid medicinal syrups on primary and permanent enamel. Al-Azhar J. Dent. Sci. 2022, 9, 531–539. [Google Scholar] [CrossRef]
- Aykut-Yetkiner, A.; Wiegand, A.; Bollhalder, A.; Becker, K.; Attin, T. Effect of acidic solution viscosity on enamel erosion. J. Dent. Res. 2013, 92, 289–294. [Google Scholar] [CrossRef]
- Sakae, L.O.; Bezerra, S.J.C.; João-Souza, S.H.; Borges, A.B.; Aoki, I.V.; Aranha, A.C.C.; Scaramucci, T. An in vitro study on the influence of viscosity and frequency of application of fluoride/tin solutions on the progression of erosion of bovine enamel. Arch. Oral Biol. 2018, 89, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Thilak, N.; Hegde, S.K.; Bhat, S.S. Erosive potential of three different commonly used pediatric syrups on deciduous teeth enamel: An in vitro study. Int. J. Contemp. Pediatr. 2020, 7, 2041–2046. [Google Scholar] [CrossRef]
- Mali, G.V.; Dodamani, A.S.; Karibasappa, G.N.; Kumar, P.V.; Jain, V.M. Effect of conventional and sugar-free pediatric syrup formulations on primary tooth enamel hardness: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 2015, 33, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.L.; West, N.X.; Hughes, J.A.; Newcombe, R.G.; Addy, M. Relative susceptibility of deciduous and permanent dental hard tissues to erosion by a low pH fruit drink in vitro. J. Dent. 2000, 28, 265–270. [Google Scholar] [CrossRef]




| Group | Syrup (Commercial Name) | Composition (API + Major Excipients) | pH (Meter) | pH (Titration) | Titratable Acidity (mmol/L NaOH) | Titratable Alkalinity (mmol/L Hcl) | Viscosity (mPa·s) | Sweeteners/Acidifiers |
|---|---|---|---|---|---|---|---|---|
| 1 | Clindamycin (Dalacin C 150 mg) | Clindamycin palmitate HCl, sucrose, … | 5.80 | 5.92 | 83.3 | 0 | 2.35 | Sucrose, cherry flavor |
| 2 | Amoxicillin (Clamoxyl 250 mg/5 mL) | Amoxicillin trihydrate, aspartame, maltodextrin, sodium benzoate, … | 6.19 | 6.34 | 160 | 0 | 202.64 | Aspartame, maltodextrin |
| 3 | Azithromycin (Zithromax 200 mg/5 mL) | Sucrose, trisodium phosphate, xanthan gum, glucose, flavors | 8.44 | 8.82 | 0 | 21.5 | 10.21 | Sucrose, glucose, citric acid traces |
| 4 | Dextromethorphan (Bronchosedal) | Glycerol, maltitol, citric acid, sodium citrate, … | 3.92 | 4.03 | 12.5 | 0 | 2.17 | Maltitol, citric acid |
| 5 | Glycerol (Balso Kids) | Dextromethorphan, sugar syrup, citric acid, … | 4.19 | 4.30 | 7 | 0 | 495.53 | Sugar, citric acid |
| 6 | Acetaminophen (Pediatric Dafalgan) | Acetaminophen, sugar, saccharin, citric acid, … | 5.33 | 5.22 | 30 | 0 | 89.24 | Sugar, saccharin, citric acid |
| 7 | Ibuprofen (Nurofen Pediatric, sugar free) | Ibuprofen, maltitol, saccharin, citric acid, … | 4.52 | 4.56 | 11.8 | 0 | N/A (too viscous for Ubbelohde) | Maltitol, saccharin, citric acid |
| 8 | Sodium valproate (Depakine 200 mg/mL) | Sodium valproate, saccharin, cellulose derivatives, … | 7.37 | 6.77 | 0 | 40 | 221.71 | Saccharin |
| 9 | Distilled water (dH2O, control) | - | 5.8 | 6.60 | 0 | 0 | 1.00 | - |
| Group | Permanent Teeth T0 (IQR) | Permanent Teeth T1 (IQR) | Primary Teeth T0 (IQR) | Primary Teeth T1 (IQR) | p-Value Permanent Teeth | p-Value Primary Teeth |
|---|---|---|---|---|---|---|
| Glycerin | 0.00 (0.00–0.00) | −0.50 (−1.10–0.10) | 0.00 (0.00–0.00) | −1.10 (−1.60–0.40) | 0.312 | 0.062 ‡ |
| Ibuprofen | −6.50 (−6.90–0.00) | 0.00 (−5.70–0.00) | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.587 | 0.479 |
| Dextromethorphan | 0.00 (0.00–0.00) | −2.20 (−5.10–0.70) | 0.00 (0.00–0.00) | −5.40 (−6.20–5.30) | 0.250 | 0.056 ‡ |
| Azithromycin | 0.00 (0.00–0.00) | −0.50 (−1.00–−0.10) | 0.00 (0.00–0.00) | −1.60 (−2.90–0.80) | 0.125 | 0.062 ‡ |
| Amoxicillin | 0.00 (0.00–0.00) | −0.50 (−0.90–−0.10) | 0.00 (0.00–0.00) | −1.10 (−2.30–0.10) | 0.125 | 0.187 |
| Acetaminophen | 0.00 (0.00–0.00) | −0.50 (−1.00–0.10) | 0.00 (0.00–0.00) | −1.10 (−1.70–0.40) | 0.500 | 0.125 |
| Sodium valproate | 0.00 (0.00–0.00) | −0.10 (−0.40–0.10) | 0.00 (0.00–0.00) | −0.80 (−1.40–0.20) | 0.125 | 0.062 ‡ |
| Clindamycin | 0.00 (0.00–0.00) | −0.40 (−0.70–0.00) | 0.00 (0.00–0.00) | −1.00 (−1.50–0.40) | 0.125 | 0.062 ‡ |
| dH2O | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 1.000 | 1.000 |
| Group | Sa T0 (IQR) | Sa T1 (IQR) | p-Value | Sz T0 (IQR) | Sz T1 (IQR) | p-Value |
|---|---|---|---|---|---|---|
| Glycerin | 73.80 (42.17–77.99) | 58.85 (51.94–67.25) | 0.187 | 423.50 (332.00–428.30) | 423.50 (332.00–428.30) | 0.062 ‡ |
| Ibuprofen | 54.96 (21.35–115.52) | 79.47 (27.01–97.03) | 0.312 | 302.50 (144.00–601.95) | 402.20 (199.55–618.15) | 0.312 |
| Dextromethorphan | 57.92 (27.21–89.21) | 54.64 (43.78–96.80) | 0.312 | 364.30 (249.15–566.55) | 304.70 (285.20–545.25) | 0.187 |
| Azithromycin | 54.49 (39.42–86.14) | 71.84 (33.99–109.92) | 0.062 ‡ | 377.20 (213.95–441.45) | 386.10 (264.10–518.05) | 0.187 |
| Amoxicillin | 75.28 (53.89–205.12) | 71.25 (65.18–155.60) | 0.312 | 417.70 (334.80–1164.30) | 375.90 (364.50–798.35) | 0.062 ‡ |
| Acetaminophen | 76.14 (43.15–92.24) | 75.56 (30.65–94.87) | 0.688 | 422.00 (246.60–492.50) | 435.90 (201.75–520.30) | 0.688 |
| Sodium valproate | 57.74 (35.26–64.88) | 61.15 (29.43–80.65) | 0.187 | 285.70 (202.80–358.60) | 393.30 (168.40–410.50) | 0.062 ‡ |
| Clindamycin | 76.62 (52.53–96.21) | 82.51 (50.07–117.69) | 0.187 | 452.10 (302.60–575.55) | 420.10 (292.65–534.60) | 0.125 |
| dH2O | 111.77 (85.57–120.56) | 135.01 (92.48–147.34) | 0.062 ‡ | 558.40 (442.85–636.00) | 719.20 (456.05–789.80) | 0.062 ‡ |
| Group | Sa T0 (IQR) | Sa T1 (IQR) | p-Value | Sz T0 (IQR) | Sz T1 (IQR) | p-Value |
|---|---|---|---|---|---|---|
| Glycerin | 74.21 (59.09–106.46) | 85.98 (53.75–133.41) | 0.062 ‡ | 456.10 (361.85–575.40) | 480.90 (315.30–781.70) | 0.062 ‡ |
| Ibuprofen | 71.56 (61.75–114.05) | 89.00 (81.25–140.67) | 0.062 ‡ | 455.40 (381.80–730.25) | 577.20 (463.75–1532.45) | 0.062 ‡ |
| Dextromethorphan | 72.15 (39.70–138.90) | 85.56 (48.76–153.51) | 0.125 | 347.10 (228.10–763.75) | 447.20 (237.90–873.30) | 0.062 ‡ |
| Azithromycin | 72.15 (66.20–97.78) | 81.13 (44.37–99.91) | 0.187 | 388.80 (340.60–539.30) | 498.00 (276.80–567.85) | 0.062 ‡ |
| Amoxicillin | 93.39 (61.44–145.13) | 139.97 (75.09–153.87) | 0.062 ‡ | 538.30 (450.80–819.45) | 788.50 (591.65–907.65) | 0.062 ‡ |
| Acetaminophen | 101.19 (86.73–146.68) | 136.85 (106.01–196.35) | 0.062 ‡ | 614.30 (487.15–869.95) | 750.20 (609.30–1044.05) | 0.062 ‡ |
| Sodium valproate | 75.70 (58.66–129.51) | 84.25 (64.75–129.90) | 0.187 | 431.70 (319.35–772.50) | 586.30 (359.65–837.65) | 0.062 ‡ |
| Clindamycin | 117.05 (95.59–200.10) | 121.47 (92.42–221.73) | 0.187 | 608.80 (511.20–962.65) | 555.70 (481.10–1227.35) | 0.062 ‡ |
| dH2O | 75.79 (66.42–108.32) | 110.37 (81.85–118.19) | 0.062 ‡ | 502.50 (387.65–632.65) | 688.40 (466.65–757.85) | 0.062 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douiri, F.-Z.; Shayegan, A. Erosive Potential of Pediatric Syrup Medications on the Human Enamel: Ex Vivo Study. Dent. J. 2025, 13, 588. https://doi.org/10.3390/dj13120588
Douiri F-Z, Shayegan A. Erosive Potential of Pediatric Syrup Medications on the Human Enamel: Ex Vivo Study. Dentistry Journal. 2025; 13(12):588. https://doi.org/10.3390/dj13120588
Chicago/Turabian StyleDouiri, Fatima-Zohra, and Amir Shayegan. 2025. "Erosive Potential of Pediatric Syrup Medications on the Human Enamel: Ex Vivo Study" Dentistry Journal 13, no. 12: 588. https://doi.org/10.3390/dj13120588
APA StyleDouiri, F.-Z., & Shayegan, A. (2025). Erosive Potential of Pediatric Syrup Medications on the Human Enamel: Ex Vivo Study. Dentistry Journal, 13(12), 588. https://doi.org/10.3390/dj13120588

