Effect of Different Primers on the Shear Bond Strength of Orthodontic Brackets Bonded to Reinforced Polyetheretherketone (PEEK) Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Treatment and Specimen Grouping
- Group 1 (control): Visio.link (Lot#: 210802, Expiry: 02/24, Bredent GmbH & Co. KG, Senden, Germany).
- Group 2 (test): traditional orthodontic primer (Transbond XT, Lot#: MB4GA, Expiry: 05/24, 3M Unitek, Monrovia, CA, USA).
2.3. Bracket Bonding
2.4. Shear Bond Strength Testing
2.5. Adhesive Remnant Index (ARI)
2.6. Scanning Electron Microscopy (SEM) Analysis
2.7. Statistical Analysis
3. Results
3.1. Shear Bond Strength
3.2. Adhesive Remnant Index (ARI)
3.3. Scanning Electron Microscopy (SEM) Observation
4. Discussion
5. Conclusions
- (a)
- SBS values obtained with the use of both tested primers exceeded the clinically recommended value (6–8 MPa).
- (b)
- SBS values of Visio.link primer (21.38 ± 1.48) were statistically significant compared to those of traditional Transbond XT primer (18.63 ± 1.29) (p < 0.0001).
- (c)
- There was a non-significant difference in bond failure modes and the distribution of ARI scores between Visio.link and Transbond XT primers.
- (d)
- There is a comparable clinical application for both tested primers in the orthodontic bonding of metal brackets to a PEEK substrate.
- (e)
- The use of readily available traditional orthodontic primer in clinical orthodontic bonding to a PEEK surface is practical if there is no Visio.link available.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najafi, H.Z.; Moradi, M.; Torkan, S. Effect of different surface treatment methods on the shear bond strength of orthodontic brackets to temporary crowns. Int. Orthod. 2019, 17, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fotovat, F.; Shishehian, A.; Alijani, S.; Alafchi, B.; Parchami, P. Comparison of shear bond strength of orthodontic stainless-steel brackets on temporary crowns fabricated by three different methods: An in vitro study. Int. Orthod. 2022, 20, 100641. [Google Scholar] [CrossRef] [PubMed]
- Morales, K.; Garces, G.; Yagnam, S.; Bustos, V.; Belfus, J.; Rojas, V. Comparison of shear bond strength of metal orthodontic brackets bonded to a CAD/CAM prosthetic provisional material after the use of a self-adhesive resin cement versus a light adhesive paste and different surface conditioning protocols: An in vitro study. Int. Orthod. 2022, 20, 100661. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Ozcan, M.; Franchi, L.; Di Bello, G.; Louca, C.; Vichi, A. Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives. Korean J. Orthod. 2019, 49, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Benli, M.; Eker-Gumus, B.; Kahraman, Y.; Huck, O.; Ozcan, M. Can polylactic acid be a CAD/CAM material for provisional crown restorations in terms of fit and fracture strength? Dent. Mater. J. 2021, 40, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Akay, C.; Israfil, N.; Pat, S. Enhancement of adhesive bonding properties of polyetheretherketone-based materials using plasma surface modifications. J. Adhes. Dent. 2022, 24, 117–124. [Google Scholar] [PubMed]
- Georgiev, J.; Vlahova, A.; Kissov, H.; Aleksandrov, S.; Kazakova, R. Possible application of BioHPP in prosthetic dentistry: A literature review. J. IMAB–Annu. Proceeding Sci. Pap. 2018, 24, 1896–1898. [Google Scholar] [CrossRef]
- Skirbutis, G.; Dzingutė, A.; Masiliūnaitė, V.; Šulcaitė, G.; Žilinskas, J. PEEK polymer’s properties and its use in prosthodontics. A review. Stomatologija 2018, 20, 54–58. [Google Scholar] [PubMed]
- Tekin, S.; Cangül, S.; Adıgüzel, Ö.; Değer, Y. Areas for use of PEEK material in dentistry. Int. Dent. Res. 2018, 8, 84–92. [Google Scholar] [CrossRef]
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The role of polyether ether ketone (PEEK) in dentistry—A review. J. Med. Life 2019, 12, 5. [Google Scholar] [CrossRef]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. PEEK high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar]
- Gama, L.T.; Duque, T.M.; Özcan, M.; Philippi, A.G.; Mezzomo, L.A.M.; Gonçalves, T.M.S.V. Adhesion to high-performance polymers applied in dentistry: A systematic review. Dent. Mater. 2020, 36, e93–e108. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Shin, M.-S.; Lee, J.-Y.; Ryu, J.-J.; Shin, S.-W. Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials. J. Adv. Prosthodont. 2017, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Rambhia, S.; Heshmati, R.; Dhuru, V.; Iacopino, A. Shear bond strength of orthodontic brackets bonded to provisional crown materials utilizing two different adhesives. Angle Orthod. 2009, 79, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.M.; Atta, O.; Kassem, A.S.; Desoky, M.; Bourauel, C. Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clin. Oral Investig. 2022, 26, 6593–6605. [Google Scholar] [CrossRef] [PubMed]
- Caglar, I.; Ates, S.M.; Yesil Duymus, Z. An In Vitro Evaluation of the Effect of Various Adhesives and Surface Treatments on Bond Strength of Resin Cement to Polyetheretherketone. J. Prosthodont. 2019, 28, e342–e349. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, D.; Razzoog, M.E.; Sierraalta, M.; Alfaro, M.F. Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyetherketoneketone (PEKK) and polyetheretherketone (PEEK). J. Prosthet. Dent. 2021, 128, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Qian, Y.; Zhu, Y.; Liu, H.; Gan, K.; Guo, J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. 2014, 30, e209–e215. [Google Scholar] [CrossRef] [PubMed]
- Eltombakshy, M.A.; Elattar, M.S.; Ahmed, D.M. Shear Bond Strength of different resin-based materials Processed on Poly-ether-ether ketone frameworks (In Vitro Study). Alex. Dent. J. 2019, 44, 93–98. [Google Scholar] [CrossRef]
- Behnaz, M.; Dalaie, K.; Mirmohammadsadeghi, H.; Salehi, H.; Rakhshan, V.; Aslani, F. Shear bond strength and adhesive remnant index of orthodontic brackets bonded to enamel using adhesive systems mixed with TiO2 nanoparticles. Dent. Press J. Orthod. 2018, 23, 43.e41–43.e47. [Google Scholar] [CrossRef]
- Sodagar, A.; Bahador, A.; Pourhajibagher, M.; Ahmadi, B.; Baghaeian, P. Effect of addition of curcumin nanoparticles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel. J. Dent. 2016, 13, 373. [Google Scholar]
- Chung, S.H.; Cho, S.; Kim, K.; Lim, B.S.; Ahn, S.J. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents. Angle Orthod. 2017, 87, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Felemban, N.H.; Ebrahim, M.I. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: An in vitro study. BMC Oral Health 2017, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Toodehzaeim, M.H.; Zandi, H.; Meshkani, H.; Firouzabadi, A.H. The effect of CuO nanoparticles on antimicrobial effects and shear bond strength of orthodontic adhesives. J. Dent. 2018, 19, 1–5. [Google Scholar]
- Eslamian, L.; Borzabadi-Farahani, A.; Karimi, S.; Saadat, S.; Badiee, M.R. Evaluation of the Shear Bond Strength and Antibacterial Activity of Orthodontic Adhesive Containing Silver Nanoparticle, an In-Vitro Study. Nanomaterials 2020, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Hammad, S.M.; El-Wassefy, N.; Maher, A.; Fawakerji, S.M. Effect of nanotechnology in self-etch bonding systems on the shear bond strength of stainless steel orthodontic brackets. Dent. Press J. Orthod. 2017, 22, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Pourhajibagher, M.; Salehi Vaziri, A.; Takzaree, N.; Ghorbanzadeh, R. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy. Photodiagnosis Photodyn. Ther. 2019, 25, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Haber, D.; Khoury, E.; Ghoubril, J.; Cirulli, N. Effect of Different Surface Treatments on the Shear Bond Strength of Metal Orthodontic Brackets Bonded to CAD/CAM Provisional Crowns. Dent. J. 2023, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Mandurino, M.; Baldani, S.; Paolone, M.G.; Goracci, C.; Scolavino, S.; Gherlone, E.; Cantatore, G.; Gastaldi, G. Quantitative Volumetric Enamel Loss after Orthodontic Debracketing/Debonding and Clean-Up Procedures: A Systematic Review. Appl. Sci. 2023, 13, 5369. [Google Scholar] [CrossRef]
- Bilal, R.; Arjumand, B. Shear bond strength and bonding properties of orthodontic and nano adhesives: A comparative In-Vitro study. Contemp. Clin. Dent. 2019, 10, 600. [Google Scholar] [CrossRef]
- EL-Awady, A.A.; Al-Khalifa, H.N.; Mohamed, R.E.; Ali, M.M.; Abdallah, K.F.; Hosny, M.M.; Mohamed, A.A.S.; ElHabbak, K.S.; Hussein, F.A. Shear bond strength and antibacterial efficacy of cinnamon and titanium dioxide nanoparticles incorporated experimental orthodontic adhesive—An in vitro comparative study. Appl. Sci. 2023, 13, 6294. [Google Scholar] [CrossRef]
- Hadrous, R.; Bouserhal, J.; Osman, E. Evaluation of shear bond strength of orthodontic molar tubes bonded using hydrophilic primers: An in vitro study. Int. Orthod. 2019, 17, 461–468. [Google Scholar] [CrossRef]
- Garces, G.A.; Rojas, V.H.; Bravo, C.; Sampaio, C.S. Shear bond strength evaluation of metallic brackets bonded to a CAD/CAM PMMA material compared to traditional prosthetic temporary materials: An in vitro study. Dent. Press J. Orthod. 2020, 25, 31–38. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Jung, H.K.; Choi, I.K.; Kwon, T.Y. Orthodontic bracket bonding to glazed full-contour zirconia. Restor. Dent. Endod. 2016, 41, 106–113. [Google Scholar] [CrossRef]
- Martínez-Sabio, L.; Peñate, L.; Arregui, M.; Veloso Duran, A.; Blanco, J.R.; Guinot, F. Comparison of Shear Bond Strength and Microleakage between Activa™ Bioactive Restorative™ and Bulk-Fill Composites—An In Vitro Study. Polymers 2023, 15, 2840. [Google Scholar] [CrossRef] [PubMed]
- Montasser, M.A.; Drummond, J.L. Reliability of the Adhesive Remnant Index Score System with Different Magnifications. Angle Orthod. 2009, 79, 773–776. [Google Scholar] [CrossRef]
- Cehreli, S.B.; Polat-Ozsoy, O.; Sar, C.; Cubukcu, H.E.; Cehreli, Z.C. A comparative study of qualitative and quantitative methods for the assessment of adhesive remnant after bracket debonding. Eur. J. Orthod. 2012, 34, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Kaneshima, E.N.; Berger, S.B.; Fernandes, T.M.F.; Navarro, M.F.L.; Oltramari, P.V.P. Using UV light for adhesive remnant removal after debonding of orthodontic accessories. Braz. Oral. Res. 2018, 32, e47. [Google Scholar] [CrossRef]
- Khan, A.; Suryadevaraya, S.S.; Rao, B.V.; Kattimani, S.; Sha, S.K.; Bhaskar, B.V. Appraisal of orthodontic brackets for Adhesive Remnant Index with and without primer: In vitro: Study. Int. J. Clin. Prev. Dent. 2018, 5, 68–70. [Google Scholar] [CrossRef]
- Alam, M.K.; Alsuwailem, R.; Alfawzan, A.A. Antibacterial activity and bond strength of silver nanoparticles modified orthodontic bracket adhesive: A systematic review and meta-analysis of in-vitro and in-vivo studies. Int. J. Adhes. Adhes. 2022, 113, 103040. [Google Scholar] [CrossRef]
- Assery, M.K.; Ajwa, N.; Alshamrani, A.; Alanazi, B.J.; Durgesh, B.H.; Matinlinna, J.P. Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding. Mater. Res. Express 2019, 6, 125098. [Google Scholar] [CrossRef]
- Farzanegan, F.; Shafaee, H.; Darroudi, M.; Rangrazi, A. Effect of the incorporation of chitosan and TiO2 nanoparticles on the shear bond strength of an orthodontic adhesive: An in vitro study. J. Adv. Oral Res. 2021, 12, 261–266. [Google Scholar] [CrossRef]
- Henkin, F.S.; Macêdo, É.O.; Santos, K.D.; Schwarzbach, M.; Samuel, S.M.; Mundstock, K.S. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets. Dent. Press J. Orthod. 2016, 21, 67–73. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | |
---|---|---|
N | 20 specimens | 20 specimens |
Minimum | 18.70 MPa | 16.75 MPa |
25% Percentile | 19.84 MPa | 17.54 MPa |
Median | 21.84 MPa | 18.52 MPa |
75% Percentile | 22.36 MPa | 19.30 MPa |
Maximum | 23.50 MPa | 21.10 MPa |
Mean | 21.38 MPa | 18.63 MPa |
Standard Deviation | 1.48 MPa | 1.29 MPa |
Standard Error of Mean | 0.33 MPa | 0.28 MPa |
Lower 95% Confidence Interval | 20.68 MPa | 18.03 MPa |
Upper 95% Confidence Interval | 22.07 MPa | 19.24 MPa |
Unpaired Independent t-Test | |
p value | <0.0001 |
Significant difference (p < 0.05) | Yes |
One- or two-tailed p value? | Two-tailed |
t, df | t = 6.237, df = 38 |
ARI 0 | ARI 1 | ARI 2 | ARI 3 | Total | p-Value | |
---|---|---|---|---|---|---|
Group 1 | 0 | (3) 15% | (11) 55% | (6) 30% | 20 | 0.6385 (NS) |
Group 2 | 0 | (5) 25% | (10) 50% | (5) 25% | 20 | |
p-value | 0.4350 (NS) | 0.7546 (NS) | 0.7266 (NS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL-Awady, A.A.; ElHabbak, K.S.; Mohamed, H.R.; Elwan, A.E.; Adly, K.S.; Abdalla, M.A.; Kamal, E.M.; Alameldin, A.L. Effect of Different Primers on the Shear Bond Strength of Orthodontic Brackets Bonded to Reinforced Polyetheretherketone (PEEK) Substrate. Dent. J. 2024, 12, 188. https://doi.org/10.3390/dj12060188
EL-Awady AA, ElHabbak KS, Mohamed HR, Elwan AE, Adly KS, Abdalla MA, Kamal EM, Alameldin AL. Effect of Different Primers on the Shear Bond Strength of Orthodontic Brackets Bonded to Reinforced Polyetheretherketone (PEEK) Substrate. Dentistry Journal. 2024; 12(6):188. https://doi.org/10.3390/dj12060188
Chicago/Turabian StyleEL-Awady, Ahmed Akram, Khaled Samy ElHabbak, Hussein Ramadan Mohamed, Ahmed Elsayed Elwan, Karim Sherif Adly, Moamen Ahmed Abdalla, Ehab Mohamed Kamal, and Ahmed Leithy Alameldin. 2024. "Effect of Different Primers on the Shear Bond Strength of Orthodontic Brackets Bonded to Reinforced Polyetheretherketone (PEEK) Substrate" Dentistry Journal 12, no. 6: 188. https://doi.org/10.3390/dj12060188
APA StyleEL-Awady, A. A., ElHabbak, K. S., Mohamed, H. R., Elwan, A. E., Adly, K. S., Abdalla, M. A., Kamal, E. M., & Alameldin, A. L. (2024). Effect of Different Primers on the Shear Bond Strength of Orthodontic Brackets Bonded to Reinforced Polyetheretherketone (PEEK) Substrate. Dentistry Journal, 12(6), 188. https://doi.org/10.3390/dj12060188