Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Laser Irradiation
2.3. Cell Proliferation Assay
2.4. Preparation of Dentin Discs
2.5. Differentiation of hDPSCs into OLCs
2.6. qRT-PCR
2.7. Statistical Analysis
3. Results
3.1. Cell Proliferation of hDPSCs with LS or LM
3.2. Gene Expression of hDPSCs Co-Cultured with Dentin Disc in BM or ODM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleton, S. Lasers in surgical periodontics and oral medicine. Dent. Clin. N. Am. 2004, 48, 937–962. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, H.; Khalil, W.; Alsofi, L.; Binmadi, N.; Elnahas, A. The effect of low-level laser on the quality of dentin barrier after capping with bioceramic material: A histomorphometric analysis. Aust. Endod. J. 2023, 49, 27–37. [Google Scholar] [CrossRef]
- Ohshiro, T. New classification for single-system light treatment. Laser Ther. 2011, 20, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Malthiery, E.; Chouaib, B.; Hernandez-Lopez, A.M.; Martin, M.; Gergely, C.; Torres, J.H.; Cuisinier, F.J.; Collart-Dutilleul, P.Y. Effects of green light photobiomodulation on dental pulp stem cells: Enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med. Sci. 2021, 36, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Amid, R.; Kadkhodazadeh, M.; Gilvari Sarshari, M.; Parhizkar, A.; Mojahedi, M. Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: An in vitro study. J. Lasers Med. Sci. 2022, 13, e1. [Google Scholar] [CrossRef]
- Turrioni, A.P.; Basso, F.G.; Montoro, L.A.; Almeida, L.F.D.; de Souza Costa, C.A.; Hebling, J. Transdentinal photobiostimulation of stem cells from human exfoliated primary teeth. Int. Endod. J. 2017, 50, 549–559. [Google Scholar] [CrossRef]
- Turrioni, A.P.; Basso, F.G.; Alonso, J.R.; de Oliveira, C.F.; Hebling, J.; Bagnato, V.S.; de Souza Costa, C.A. Transdentinal cell photobiomodulation using different wavelengths. Oper. Dent. 2015, 40, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Theocharidou, A.; Bakopoulou, A.; Kontonasaki, E.; Papachristou, E.; Hadjichristou, C.; Bousnaki, M.; Theodorou, G.; Papadopoulou, L.; Kantiranis, N.; Paraskevopoulos, K.; et al. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med. Sci. 2017, 32, 201–210. [Google Scholar] [CrossRef]
- Staffoli, S.; Romeo, U.; Amorim, R.N.S.; Migliau, G.; Palaia, G.; Resende, L.; Polimeni, A. The effects of low level laser irradiation on proliferation of human dental pulp: A narrative review. Clin. Ter. 2017, 168, e320–e326. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Wu, F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling. Lasers Med. Sci. 2022, 37, 941–948. [Google Scholar] [CrossRef]
- Aleksic, V.; Aoki, A.; Iwasaki, K.; Takasaki, A.A.; Wang, C.Y.; Abiko, Y.; Ishikawa, I.; Izumi, Y. Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med. Sci. 2010, 25, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Miyata, H.; Genma, T.; Ohshima, M.; Yamaguchi, Y.; Hayashi, M.; Takeichi, O.; Ogiso, B.; Otsuka, K. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int. Endod. J. 2006, 39, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, J.A.; Kato, J.; Moriya, K.; Takagi, Y. Pulpal response to exposure with Er:YAG laser. Oral Surg. Oral Med. Oral. Pathol. Oral. Radiol. Endod. 2001, 91, 222–229. [Google Scholar] [CrossRef]
- Pereira, A.N.; Eduardo, P.C.D.E.; Matson, E.; Marques, M.M. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg. Med. 2002, 31, 263–267. [Google Scholar] [CrossRef]
- Nuti, N.; Corallo, C.; Chan, B.M.; Ferrari, M.; Gerami-Naini, B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev. Rep. 2016, 12, 511–523. [Google Scholar] [CrossRef]
- Özdal-Kurt, F.; Şen, B.H.; Tuğlu, I.; Vatansever, S.; Türk, B.T.; Deliloğlu-Gürhan, I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch. Oral Biol. 2016, 68, 131–141. [Google Scholar] [CrossRef]
- İslam, A.; Özverel, C.S.; Yilmaz, H.G. Comparative evaluation of low-level laser therapy on proliferation of long-term cryopreserved human dental pulp cells isolated from deciduous and permanent teeth. Lasers Med. Sci. 2021, 36, 421–427. [Google Scholar] [CrossRef]
- Huang, G.T.; Sonoyama, W.; Chen, J.; Park, S.H. In vitro characterization of human dental pulp cells: Various isolation methods and culturing environments. Cell Tissue Res. 2006, 324, 225–236. [Google Scholar] [CrossRef]
- Borzabadi-Farahani, A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J. Photochem. Photobiol. B. 2016, 162, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Dalirsani, Z.; Tayarani-Najaran, Z.; Ebrahimzadeh-Bideskan, A.; Shafieian, R. A comparative analysis of photobiomodulation-mediated biological effects of single versus double irradiation on dental pulp stem cells: An in vitro study. Photobiomodul. Photomed. Laser Surg. 2002, 40, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Miyano, Y.; Mikami, M.; Katsuragi, H.; Shinkai, K. Effects of Sr2+, BO33−, and SiO32− on differentiation of human dental pulp stem cells into odontoblast like cells. Biol. Trace Elem. Res. 2023, 201, 5585–5600. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Hu, J.; Wang, L.; Li, N.; Wu, D.; Shi, X.; Yuan, M.; Hu, W.; Wang, X. Endothelial cells and endothelin-1 promote the odontogenic differentiation of dental pulp stem cells. Mol. Med. Rep. 2018, 18, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Shamszadeh, S.; Asgary, S.; Torabzadeh, H.; Hosseinzadeh, S.; Nosrat, A. Cytokine co-stimulation effect on odontogenic differentiation of stem cells. Clin. Oral Investig. 2022, 26, 4789–4796. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Hideshima, K.; Ikeda, T. Nestin expression in odontoblasts and odontogenic ectomesenchymal tissue of odontogenic tumours. J. Clin. Pathol. 2006, 59, 240–245. [Google Scholar] [CrossRef]
- About, I.; Laurent-Maquin, D.; Lendahl, U.; Mitsiadis, T.A. Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am. J. Pathol. 2000, 157, 287–295. [Google Scholar] [CrossRef]
- Loo, D.T.; Althoen, M.C.; Cotman, C.W. Down regulation of nestin by TGF-β or serum in SFME cells accompanies differentiation into astrocytes. Neuroreport 1994, 5, 1585–1588. [Google Scholar] [CrossRef]
- Yamakawa, S.; Niwa, T.; Karakida, T.; Kobayashi, K.; Yamamoto, R.; Chiba, R.; Yamakoshi, Y.; Hosoya, N. Effects of Er:YAG and diode laser irradiation on dental pulp cells and tissues. Int. J. Mol. Sci. 2018, 19, 2429. [Google Scholar] [CrossRef]
- Li, Y.; Lü, X.; Sun, X.; Bai, S.; Li, S.; Shi, J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch. Oral Biol. 2011, 56, 1221–1229. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Q.; Yu, X.; Zeng, X. Laser therapy versus topical desensitising agents in the management of dentine hypersensitivity: A meta-analysis. Oral Dis. 2021, 27, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Pion, L.A.; Matos, L.L.M.; Gimenez, T.; Palma-Dibb, R.G.; Faraoni, J.J. Treatment outcome for dentin hypersensitivity with laser therapy: Systematic review and meta-analysis. Dent. Med. Probl. 2023, 60, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Alencar, C.D.; Ortiz, M.I.; Silva, F.A.; Alves, E.B.; Araújo, J.L.; Silva, C.M. Effect of nanohydroxyapatite associated with photobiomodulation in the control of dentin hypersensitivity: A randomized, double-blind, placebo-controlled clinical trial. Am. J. Dent. 2020, 33, 138–144. [Google Scholar] [PubMed]
- Machado, A.C.; Viana, Í.E.L.; Farias-Neto, A.M.; Braga, M.M.; de Paula Eduardo, C.; de Freitas, P.M.; Aranha, A.C.C. Is photobiomodulation (PBM) effective for the treatment of dentin hypersensitivity? A systematic review. Lasers Med. Sci. 2018, 33, 745–753. [Google Scholar] [CrossRef] [PubMed]
LS | LM | |||||||
---|---|---|---|---|---|---|---|---|
WL | 10 mW | 30 mW | 150 mW | WL | 10 mW | 30 mW | 150 mW | |
6 h after seeding | − | + | + | + | − | + | + | + |
4 day after seeding | − | − | − | − | − | + | + | + |
8 day after seeding | − | − | − | − | − | + | + | + |
12 day after seeding | − | − | − | − | − | + | + | + |
Group | Laser Irradiation | BM | ODM | Dentin Discs |
---|---|---|---|---|
D | + | + | − | + |
O | + | − | + | − |
OD | + | − | + | + |
C | + | + | − | − |
Gene | Nucleotide Sequence | Amplicon Size (bp) |
---|---|---|
DSPP | F: GGGCAAAGGCAATGTCAAGA | 160 |
R: TCCTTGCATGGACTTATCATCAA | ||
DMP-1 | F: CAAGACAGAGAGCTATGAACACGATAT | 115 |
R: TGCAACCTTCCAACTCCAATG | ||
Nestin | F: CAGGGGCAGACATCATTGGT | 77 |
R: CACTCCCCCATTCACATGCT | ||
ALP | F: CCGTCTGTGACCCATCTCATG | 110 |
R: AGGGCAGCCTCTGTCATCTC | ||
GAPDH | F: GACAGTCAGCCGCATCTTCT | 104 |
R: GCGCCCAATACGACCAAATC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarita, M.; Kitajima, K.; Morita, T.; Shinkai, K. Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin. Dent. J. 2024, 12, 67. https://doi.org/10.3390/dj12030067
Yarita M, Kitajima K, Morita T, Shinkai K. Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin. Dentistry Journal. 2024; 12(3):67. https://doi.org/10.3390/dj12030067
Chicago/Turabian StyleYarita, Masafumi, Kayoko Kitajima, Takao Morita, and Koichi Shinkai. 2024. "Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin" Dentistry Journal 12, no. 3: 67. https://doi.org/10.3390/dj12030067
APA StyleYarita, M., Kitajima, K., Morita, T., & Shinkai, K. (2024). Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin. Dentistry Journal, 12(3), 67. https://doi.org/10.3390/dj12030067