Laser Technology in Dentistry: From Clinical Applications to Future Innovations
Abstract
1. Introduction
2. Clinical Applications of the Laser in Dentistry
3. Lasers in Soft Tissue Surgery
4. Lasers in Hard Tissue Surgery in Dentistry
Direction | Use | Bibliographies |
---|---|---|
Prophylaxis | Laser descaling | [30] |
Disinfection of the oral cavity | Disinfection of the oral cavity | [22,31] |
Periodontology | Treatment of periodontal disease | [32,33] |
Gingivectomy procedures | ||
Orthodontics | Facilitation of tooth movement | [34] |
Elimination of injuries caused by the device | ||
Implantology | Bone preparation | [35,36] |
Disinfection of the implant area | ||
Endodontics | Root canal treatment | [37] |
Oral surgery | Tooth extraction | [38,39,40] |
Soft tissue surgery | ||
Teeth whitening | Soft tissue surgery | [39] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Myers, T.D. The future of lasers in dentistry. J. Clin. Laser Med. Surg. 1991, 9, 399–404. [Google Scholar] [CrossRef]
- Parker, S.P.A. Laser-tissue interaction. Br. Dent. J. 2007, 202, 73–81. [Google Scholar] [CrossRef]
- Romanos, G.E.; Nentwig, G.H. Diode laser (980 nm) in oral and maxillofacial surgical procedures: Clinical observations based on clinical applications. J. Clin. Laser Med. Surg. 1999, 17, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.M.; Chen, C.Y.; Kim, D.M. The effects of using erbium, chromium-doped laser on the surface modification, bacterial decontamination, and cell adhesion on zirconia discs: An in vitro study. Lasers Med. Sci. 2021, 36 (Suppl. S1), 1701–1708. [Google Scholar] [CrossRef]
- Goharkhay, K.; Moritz, A.; Wilder-Smith, P.; Schoop, U.; Kluger, W.; Jakolitsch, S.; Sperr, W. Effects on oral soft tissue produced by a diode laser in vitro. Lasers Surg. Med. 1999, 25, 401–406. [Google Scholar] [CrossRef]
- Walsh, L.J. The current status of laser applications in dentistry. Aust. Dent. J. 2003, 48, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Parker, S. Introduction, history of lasers and laser light production. Br. Dent. J. 2007, 202, 21–31. [Google Scholar] [CrossRef]
- Parker, S.; Verma, S. Lasers in dentistry: An innovative technology. Br. Dent. J. 2019, 6, 1–6. [Google Scholar]
- Kimura, Y. Lasers in endodontics: A review. Int. Endod. J. 2000, 33, 173–185. [Google Scholar] [CrossRef]
- Asnaashari, M.; Zadsirjan, S. Application of laser in oral surgery. J. Lasers Med. Sci. 2014, 5, 97–107. [Google Scholar]
- Abu-Ta’a, M.; Karameh, R. Laser and its application in periodontology: A review of literature. Open J. Stomatol. 2022, 12, 305–320. [Google Scholar] [CrossRef]
- Tzanakakis, E.G.C.; Skoulas, E.; Pepelassi, E.; Koidis, P.; Tzoutzas, I.G. The use of lasers in dental materials: A review. Materials 2021, 14, 3370. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, S.; Mulder, R. The use of laser-based technologies in dentistry: Ethical issues and safety considerations. S. Afr. Dent. J. 2015, 70, 464–466. [Google Scholar]
- George, R. Laser in dentistry-Review. Int. J. Dent. Clin. 2009, 1, 13–19. [Google Scholar]
- Gutknecht, N. State of the art in lasers for dentistry. J. Laser Health Acad. 2008, 3, 1–5. [Google Scholar]
- Lazăr, A.-P.; Dinulescu, T.; Dako, T.; Mârţu, M.-A.; Suciu, M.; Lazăr, L. Laser in periodontology: A review of the fields of applicability and therapeutic effects. Rom. J. Oral Rehabil. 2022, 14, 108. [Google Scholar]
- Diaci, J.; Gaspirc, B. Comparison of Er and Er, Cr lasers used in dentistry. J. Laser Health Acad. 2012, 1, 1–3. [Google Scholar]
- Verma, S.K.; Maheshwari, S.; Singh, R.K.; Chaudhari, P.K. Laser in Dentistry: An Innovative Tool in Modern Dental Practice. Natl. J. Maxillofac. Surg. 2012, 3, 124–132. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Trilli, I.; Piras, F.; Ciocia, A.M.; Inchingolo, A.D.; Mancini, A.; Hazballa, D.; Di Venere, D.; Inchingolo, F.; et al. Therapeutic and adverse effects of lasers in dentistry: A systematic review. Photonics 2023, 10, 650. [Google Scholar] [CrossRef]
- Minamizato, T. Slip-cast zirconia dental roots with tunnels drilled by laser process. J. Prosthet. Dent. 1990, 63, 677–684. [Google Scholar] [CrossRef]
- Ting, M.; Alluri, L.S.C.; Sulewski, J.G.; Suzuki, J.B.; da Silva, A.P.B. Laser treatment of peri-implantitis: A systematic review of radiographic outcomes. Dent. J. 2022, 10, 20. [Google Scholar] [CrossRef]
- Shukla, P.; Dahiya, A.; Sharma, N. Future directions for lasers in general dental practice: Cost reduction and accessibility. J. Dent. Pract. 2024, 12, 201–216. [Google Scholar]
- Binrayes, A. An update on the use of lasers in prosthodontics. Cureus 2024, 16, e57282. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Vyas, T.; Kewalia, K.; Barupal, S. Laser in dentistry—A review. Univ. J. Dent. Sci. 2023, 9, 21. [Google Scholar] [CrossRef]
- Panova, N.K.; Nikolova, K.T.; Dikova, T.D. Application of lasers and laser processing technologies in modern dentistry: A review. J. Chem. Technol. Metall. 2023, 58, 1116–1127. [Google Scholar] [CrossRef]
- Agop-Forna, D.; Sălceanu, M.; Topoliceanu, C.; Creţu, C.; Vasincu, D.; Forna, N. Dental Lasers in Restorative Dentistry: A Review. Rom. J. Oral Rehabil. 2021, 13, 7. [Google Scholar]
- Alghamdi, M.A.M.; Halawani, M.; Alarawi, H.A.; Alzaidi, A.M.; Alhogail, L.H.; Alsobhi, S.W.O.; Alamrai, A.H.M.; Alrashedi, J.A.M.; AlRashidi, A.N.B.; Al-Ghamdi, T.A.A. The Use of Laser Technology in Dentistry: A Comprehensive Review. Migr. Lett. 2022, 19, 577–586. [Google Scholar]
- American Academy of Periodontology. Lasers in Periodontics: A Position Paper. J. Periodontol. 2002, 73, 1231–1239. [Google Scholar] [CrossRef]
- Coluzzi, D.J.; Parker, S.P.A. (Eds.) Lasers in Dentistry—Current Concepts, 2nd ed.; Springer: Cham, Switzerland, 2023; pp. 437–585. [Google Scholar]
- Mathew, M.G. Lasers in Dentistry—Current Concepts. Br. Dent. J. 2024, 236, 597. [Google Scholar] [CrossRef]
- Everett, J.D.; Rossmann, J.A.; Kerns, D.G.; Al-Hashimi, I. Laser-Assisted Non-Surgical Periodontal Therapy: A Double-Blind, Randomized Clinical Trial. Open Dent. J. 2017, 11, 79–90. [Google Scholar] [CrossRef]
- Colluzzi, D. Fundamentals of dental lasers: Science and instruments. Dent. Clin. N. Am. 2004, 48, 1017–1059. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraj, S.; Ari, G.; Rajendran, S.; Mahendra, J. A Review on the Use of Lasers in Periodontics. Ann. Rom. Soc. Cell Biol. 2021, 24, 1056–1061. [Google Scholar]
- Dutta Majumdar, J.; Manna, I. Laser processing of materials. Sadahana 2003, 28, 495–562. [Google Scholar] [CrossRef]
- Papadopoulos, C.A.; Vouros, I.; Menexes, G.; Konstantinidis, A. The Utilization of a Diode Laser in the Surgical Treatment of Peri-Implantitis. A Randomized Clinical Trial. Clin. Oral Investig. 2015, 19, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.; McBride, M.; Newton, P.; Kurtz, K. Laser surface treatment to improve properties of cast titanium. Dent. Mater. 2009, 25, 629–633. [Google Scholar] [CrossRef]
- Rodriguez Salazar, D.Y.; Málaga Rivera, J.A.; Laynes Effio, J.E.; Valencia-Arias, A. A Systematic Review of Trends in Photobiomodulation in Dentistry between 2018 and 2022: Advances and Investigative Agenda. F1000Research 2023, 12, 1415. [Google Scholar] [CrossRef]
- Nevins, M.; Nevins, M.L.; Camelo, M.; Boyesen, J.L.; Kim, D.M. Laser-Assisted New Attachment Procedure in the Treatment of Periodontal Pockets: A Retrospective Evaluation of Clinical Outcomes in a Private Practice. J. Periodontol. 2022, 93, 739–747. [Google Scholar]
- Slot, D.E.; Jorritsma, K.H.; Cobb, C.M.; van der Weijden, G.A. The Effect of a Laser-Assisted Periodontal Therapy (LANAP) on Periodontal Parameters: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2022, 49, 907–920. [Google Scholar]
- de Oliveira, G.; Da Costa, M.C.; Barbosa, D.B. Laser-assisted endodontic disinfection: An in vitro comparative study of diode and Nd lasers. J. Endod. 2021, 47, 487–492. [Google Scholar]
- Hong, J.-U.; Kwon, J.-J.; Heo, S.C.; Shin, S.-H.; Kim, H.J.; Lee, J.-Y. Effects of photobiomodulation on bone remodeling in an osteoblast–osteoclast co-culture system. Lasers Med. Sci. 2022, 37, 1049–1059. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Photobiomodulation Dose Parameters in Dentistry: A Systematic Review and Meta-Analysis. Dent. J. 2020, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.M.; Bice, R.W.; Gilbert, W.A. Orthodontic Treatment of Periodontally Compromised Teeth after Laser Periodontal Therapy: A Case Report. Photobiomodul. Photomed. Laser Surg. 2021, 39, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, G.; Inchingolo, A.M.; Patano, A.; Palumbo, I.; Guglielmo, M.; Trilli, I.; Netti, A.; Ferrara, I.; Viapiano, F.; Inchingolo, A.D.; et al. Photobiomodulation and Growth Factors in Dentistry: A Systematic Review. Photonics 2023, 10, 1095. [Google Scholar] [CrossRef]
- Mester, E.; Mester, A.F.; Mester, A. The Biomedical Effects of Laser Application. Lasers Surg. Med. 1985, 5, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Monteiro, F.; Oliveira, S.; Costa, I.; Catarino, S.O.; Carvalho, Ó.; Padrão, J.; Zille, A.; Pinho, T.; Silva, F.S. Optimization of a Photobiomodulation Protocol to Improve the Cell Viability, Proliferation and Protein Expression in Osteoblasts and Periodontal Ligament Fibroblasts for Accelerated Orthodontic Treatment. Biomedicines 2024, 12, 180. [Google Scholar] [CrossRef]
- Rojas, J.; Torres, A.; Contreras, D. Photobiomodulation: The Future of Laser Therapy in Dentistry. J. Laser Dent. 2024, 14, 45–59. [Google Scholar]
- El Mobadder, M.; Abi Nader, E.; Rizk, F. Photobiomodulation and its effect on post-extraction wound healing. J. Dent. Surg. 2023, 22, 33–44. [Google Scholar]
- Zein, R.; Sukari, H.; Nasser, M. The role of photobiomodulation in orthodontic tooth movement. J. Orthod. Laser Ther. 2021, 10, 152–164. [Google Scholar]
- Ciurescu, C.E.; Dima, L.; Ciurescu, V.A.; Noja, G.G.; Istodor, A.V.; Moga, M.A.; Ardelean, L.C.; Rusu, L.-C.; Leretter, M.T. Laser Therapy Effects on Periodontal Status: A Randomized Study Using Gaussian Network Analysis and Structural Equation Modeling Approach. Medicina 2024, 60, 437. [Google Scholar] [CrossRef]
- Oliveira, G.; Barbosa, D.B. Denosumab Use as a Predictor Variable for External Cervical Resorption: A Case-Control Study. J. Endod. 2021, 47, 366–373. [Google Scholar] [CrossRef]
- Smith, T.; Yamada, T.; Patel, N. Integration of Lasers with AI in Personalized Dental Treatments: Current Trends and Future Prospects. Dent. Technol. Today 2024, 5, 78–89. [Google Scholar]
- Coluzzi, D.J.; Parker, S. Minimally invasive laser surgery in dentistry: Recent advances and future perspectives. Int. J. Laser Dent. 2023, 13, 102–114. [Google Scholar]
- Hamblin, M.R. Photobiomodulation therapy within clinical dentistry: Theoretical and applied concepts. Lasers Med. Sci. 2019, 34, 199–212. [Google Scholar]
- Mamalis, A.; Siegel, D.; Jagdeo, J. Visible red light emitting diode photobiomodulation for skin fibrosis: Key molecular pathways. Curr. Dermatol. Rep. 2016, 5, 121–128. [Google Scholar] [CrossRef]
- Aykol, G.; Baser, U.; Maden, I.; Kazak, Z.; Onan, U.; Tanrikulu-Kucuk, S.; Ademoglu, E.; Issever, H.; Yalcin, F. The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J. Periodontol. 2011, 82, 481–488. [Google Scholar] [CrossRef]
- Soni, S.; Thakar, S. A Review of Photobiomodulation and Its Application in Dentistry. Indian J. Dent. Sci. 2022, 14, 209–212. [Google Scholar] [CrossRef]
- Esposito, A.; Savini, A.; Romanos, G.E. The role of lasers in peri-implantitis treatment: Future perspectives. Clin. Implant Dent. Relat. Res. 2024, 26, 112–119. [Google Scholar]
- Huang, Q.; Li, Z.; Lyu, P.; Zhou, X.; Fan, Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering 2023, 10, 296. [Google Scholar] [CrossRef]
- Alzaid, N.; Ghulam, O.; Albani, M.; Alharbi, R.; Othman, M.; Taher, H.; Albaradie, S.; Ahmed, S. Revolutionizing Dental Care: A Comprehensive Review of Artificial Intelligence Applications Among Various Dental Specialties. Cureus 2023, 15, e47033. [Google Scholar] [CrossRef] [PubMed]
- Luke, A.M.; Mathew, S.; Altawash, M.M.; Madan, B.M. Lasers: A Review with Their Applications in Oral Medicine. J. Lasers Med. Sci. 2019, 10, 324–329. [Google Scholar] [CrossRef]
- Soares, D.M.; Mazzoni, A.; Breschi, L. Laser photobiomodulation: A new frontier in endodontic treatment. J. Endod. Laser Med. 2023, 12, 101–118. [Google Scholar]
- Manni, A.; Pellegrini, G.; Perinetti, G. Photobiomodulation and its impact on tissue regeneration in dentistry. J. Laser Dent. 2020, 18, 113–128. [Google Scholar]
- Marques, M.M.; de Cara, S.P.H.M.; Abe, G.L.; Pedroni, A.C.F.; Diniz, I.M.A.; Moreira, M.S. Effects of photobiomodulation therapy in dentoalveolar-derived mesenchymal stem cells: A review of literature. Lasers Dent. Sci. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Vashisht, R.; Sharma, A.; Kiran, T.; Jolly, S.S.; Brar, P.K.; Puri, J.V. Artificial Intelligence in Dentistry—A Scoping Review. J. Oral Maxillofac. Surg. Med. Pathol. 2024, 36, 579–592. [Google Scholar] [CrossRef]
- Linden, E. Laser Treatment. J. Am. Dent. Assoc. 2011, 142, 795–796. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.P.; Rosen, P.S.; Chambrone, L.; Greenwell, H.; Kao, R.T.; Klokkevold, P.R.; McAllister, B.S.; Reynolds, M.A.; Romanos, G.E.; Wang, H.-L. American Academy of Periodontology Best Evidence Consensus Statement on the Efficacy of Laser Therapy Used Alone or as an Adjunct to Non-Surgical and Surgical Treatment of Periodontitis and Peri-Implant Diseases. J. Periodontol. 2018, 89, 737–742. [Google Scholar] [CrossRef]
Database | Keywords | Combinations |
---|---|---|
PubMed | laser, dentistry | “laser technology” and “dental treatments” or “photobiomodulation” and “dentistry” |
Scopus | dental laser, PBM | “dental laser applications” and “clinical outcomes” or “PBM” and “dental health” |
Web of Science | laser therapy, dental procedures | “laser therapy” and “dental care” or “laser” and “dental procedures” |
Application | Description | Bibliography |
---|---|---|
Soft Tissue Surgery | Using lasers for soft tissue procedures like gingivectomy reduces inflammation and promotes rapid healing. | Romanos, G.E.; Nentwig, G.H. (1999) [4] |
Hard Tissue Surgery | Lasers are used to remove caries and reshape bone; they are effective on hard tissues like enamel and dentin. | Parker, S. (2007) [3] |
Root Canal Therapy | Sterilizing root canals with the laser to eliminate bacteria, improving endodontic treatment. | Pham et al. (2021) [5] |
Teeth Whitening | Speeding up the whitening process by activating bleaching agents with the laser. | Walsh, L.J. (2003) [7] |
Pain Management and Biostimulation | Low-level laser therapy (LLLT) reduces pain and stimulates tissue after procedures. | Goharkhay, K. et al. (1999) [6] |
Periodontal Treatments | Laser periodontal treatment to reduce periodontal pockets and stimulate tissue regeneration. | Parker, S. (2007) [8] |
Oral Lesions and Precancerous Conditions Treatment | Laser removal of oral lesions and treating precancerous conditions with minimal scarring. | Myers, T.D. (1991) [2] |
Aspect | Description | Clinical Relevance | Bibliography |
---|---|---|---|
Advantages | Reduced bleeding due to the laser’s ability to coagulate blood vessels during surgery, leading to less intraoperative and postoperative bleeding [1]. | In gingivectomy, laser reduces bleeding and eliminates the need for sutures. | Asnaashari, M.; Zadsirjan, S., 2014 [11] |
Advantages | Minimized damage to surrounding tissues due to the laser’s precision, resulting in faster recovery and reduced swelling [2]. | In frenectomy, minimal damage allows for faster healing and less patient discomfort. | Abu-Ta’a, M.; Karameh, R., 2022 [12] |
Advantages | Lower risk of infection as the laser sterilizes the area during the procedure, reducing bacterial contamination [1]. | Laser use in excising lesions or treating periodontitis reduces the risk of secondary infection. | Asnaashari, M.; Zadsirjan, S., 2014 [11] |
Disadvantages | The high cost of laser equipment makes it less accessible for smaller dental practices and increases treatment costs for patients [3]. | Smaller clinics may not afford laser technology, impacting the availability of laser treatments. | Tzanakakis et al., 2021 [13] |
Disadvantages | Limited penetration depth in soft tissue surgeries can restrict the laser’s effectiveness in certain procedures [4]. | Procedures requiring deep-tissue work may still necessitate conventional methods. | Naidoo, S.; Mulder, R., 2015 [14] |
Disadvantages | Requires specialized training for dental practitioners, which may limit its widespread use in some clinics [2]. | Clinics with insufficient training may face challenges in adopting laser technology. | Abu-Ta’a, M.; Karameh, R., 2022 [12] |
Advantages | Disadvantages |
---|---|
Minimally invasive technique leading to less pain and discomfort. | The high initial cost of laser equipment [15,16]. |
Reduced need for anesthesia in certain procedures. | Requires specialized training for proper usage [15]. |
Decreased bleeding due to laser coagulation effect. | Limited application in certain dental procedures [17]. |
Reduced risk of infection due to laser’s antimicrobial properties. | Possible thermal damage to surrounding tissues if not used correctly [16]. |
Improved precision in tissue removal compared with traditional methods. | Not every time is suitable for deep caries removal [15,17]. |
Faster recovery time for patients. | The procedure took longer in some cases than traditional methods [17]. |
Application | Description | Clinical Relevance and References |
---|---|---|
Postoperative Healing | PBM accelerates tissue healing and reduces inflammation after surgeries such as gingivectomy or frenectomy. | It improves recovery time and reduces postoperative complications [44,45]. |
Bone Remodeling | PBM promotes osteoblast activity and supports bone regeneration in implantology. | Enhances implant stability and bone integration [46]. |
Pain Management | PBM alleviates postoperative pain by modulating inflammatory responses and neural pathways. | Improves patient comfort and reduces reliance on analgesics [47,48,49]. |
Periodontal Therapy | PBM aids in reducing pocket depth and regenerating periodontal tissues during LANAP procedures. | Supports minimally invasive management of periodontitis [47]. |
Root Canal Disinfection | PBM complements laser-assisted canal sterilization by improving tissue healing around treated roots. | Increases success rates of endodontic treatments [48]. |
Aesthetic Applications | PBM minimizes sensitivity during teeth whitening and supports enamel repair. | Improves patient satisfaction in aesthetic dentistry [49,50,51]. |
Aspect | Details |
---|---|
Types of Lasers | Er:YAG [45], Nd:YAG [44,45,46,47], Diode [50,52] |
Applications | Periodontal surgery, implant treatments, management of peri-implantitis [45,53,54], minimally invasive surgery [51,54] |
Benefits | Precision in treatment, reduced bleeding, minimal discomfort, and faster healing [55,56,57,58] |
Effects | Decontamination, coagulation, stimulation of healing, reduction in bacterial biofilm [55,59,60,61,62] |
Technological Integration | 3D imaging, AI for personalized treatment [62,63,64,65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachelarie, L.; Cristea, R.; Burlui, E.; Hurjui, L.L. Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dent. J. 2024, 12, 420. https://doi.org/10.3390/dj12120420
Sachelarie L, Cristea R, Burlui E, Hurjui LL. Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dentistry Journal. 2024; 12(12):420. https://doi.org/10.3390/dj12120420
Chicago/Turabian StyleSachelarie, Liliana, Roxana Cristea, Ecaterina Burlui, and Loredana Liliana Hurjui. 2024. "Laser Technology in Dentistry: From Clinical Applications to Future Innovations" Dentistry Journal 12, no. 12: 420. https://doi.org/10.3390/dj12120420
APA StyleSachelarie, L., Cristea, R., Burlui, E., & Hurjui, L. L. (2024). Laser Technology in Dentistry: From Clinical Applications to Future Innovations. Dentistry Journal, 12(12), 420. https://doi.org/10.3390/dj12120420