Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design, Sample Selection, and Ethical Aspects
2.2. Materials and Study Protocol
- Gr. A (n = 10): selected to be prepared with new burs (first use);
- Gr. B (n = 10): selected to be prepared with burs at their fifth use;
- Gr. C (n = 10): selected to be prepared with burs at their eighth use (Table 1).
2.3. Statistical Analysis
3. Results
4. Discussion
- -
- The sample size was small; hence, further studies with a larger sample size are needed.
- -
- In the in vitro study, we could not survey the flow of dentinal fluid in the dentin tubules and the perfusion of blood or the surrounding periodontal tissues, which may have a critical impact in the temperature regulation of the dental pulp.
- -
- In this study, we could not control and standardize rigorously all the variables that can influence the temperature of the pulp chamber during the prosthetic preparation, such as the initial temperature of the teeth, which was not the same as that in the oral cavity.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.; Abbott, P. An overview of the dental pulp: Its functions and responses to injury. Aust. Dent. J. 2007, 52 (Suppl. S1), S4–S16. [Google Scholar] [CrossRef]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Levin, L.G. Pulpal irritants. Endod. Top. 2003, 5, 2–11. [Google Scholar] [CrossRef]
- Lau, X.E.; Liu, X.; Chua, H.; Wang, W.J.; Dias, M.; Choi, J.J.E. Heat generated during dental treatments affecting intrapulpal temperature: A review. Clin. Oral Investig. 2023, 27, 2277–2297. [Google Scholar] [CrossRef] [PubMed]
- Langeland, K.; Langeland, L.K. Pulp reactions to crown preparation, impression, temporary crown fixation and permanent cementation. J. Prosthet. Dent. 1965, 15, 129–143. [Google Scholar] [CrossRef]
- Seelbach, P.; Finger, W.J.; Ferger, P.; Balkenhol, M. Temperature rise on dentin caused by temporary crown and fixed partial denture materials: Influencing factors. J. Dent. 2010, 38, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, A.; Veríssimo, C.; Tantbirojn, D.; Garcia-Godoy, F.; Soares, C.; Versluis, A. Heat generated during light-curing of restorative composites: Effect of curing light, exotherm, and experiment substrate. Am. J. Dent. 2016, 29, 234–2240. [Google Scholar] [PubMed]
- Kodonas, K.; Gogos, C.; Tziafa, C. Effect of simulated pulpal microcirculation on intrachamber temperature changes following application of various curing units on tooth surface. J. Dent. 2009, 42, 247–252. [Google Scholar] [CrossRef]
- Ottl, P.; Lauer, H.-C. Temperature response in the pulpal chamber during ultrahigh-speed tooth preparation with diamond burs of different grit. J. Prosthet. Dent. 1998, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, C.; Rotella, M.; Funkenbusch, P.D.; Russell, S.; Feng, C. In vitro comparison of the cutting efficiency and temperature production of 10 different rotary cutting instruments. Part I: Turbine. J. Prosthet. Dent. 2009, 101, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C.; Wilder-Smith, P. Laser-induced thermal events in empty and pulp-filled dental pulp chambers. Lasers Surg. Med. 1998, 22, 46–50. [Google Scholar] [CrossRef]
- Bernier, J.L.; Knapp, M.J. A new pulpal response to high-speed dental instruments. Oral Surg. Oral Med. Oral Pathol. 1958, 11, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Zach, L.; Cohen, G. Biology of High Speed Rotary Operative Dental Procedures. I. Correlation of Tooth Volume Removed and Pulpal Pathology. J. Denl. Res. 1958, 37, 67. [Google Scholar]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, S.; Miyazaki, Y.; Liu, H.-J.; Iwamoto, Y.; Kitano, M.; Kawagoe, M. Bacterial invasion into dentinal tubules of human vital and nonvital teeth. J. Endod. 1995, 21, 70–73. [Google Scholar] [CrossRef]
- Barallat, L.; Arregui, M.; Fernandez-Villar, S.; Paniagua, B.; Rocca, A.P.-L. Fracture Resistance in Non-Vital Teeth: Absence of Interproximal Ferrule and Influence of Preparation Depth in CAD/CAM Endocrown Overlays—An In Vitro Study. Materials 2022, 15, 436. [Google Scholar] [CrossRef] [PubMed]
- Farges, J.-C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef] [Green Version]
- Edelhoff, D.; Liebermann, A.; Beuer, F.; Stimmelmayr, M.; Güth, J.-F. Minimally invasive treatment options in fixed prosthodontics. Quintessence Int. 2016, 47, 207–216. [Google Scholar] [CrossRef]
- Galindo, D.F.; Ercoli, C.; Funkenbusch, P.D.; Greene, T.D.; Moss, M.E.; Lee, H.; Ben-Hanan, U.; Graser, G.N.; Barzilay, I. Tooth Preparation: A Study on the Effect of Different Variables and a Comparison between Conventional and Channeled Diamond Burs. J. Prosthodont. 2004, 13, 3–16. [Google Scholar] [CrossRef]
- Yang, W.-J.; Sun, J. Effect of the spray pattern, water flow rate, and cutting position on the cutting efficiency of high-speed dental handpieces. Int. J. Prosthodont. 2013, 26, 85–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spierings, T.M.; Peters, M.C.R.B.; Plasschaert, A.J.M. Thermal trauma to teeth. Dent. Traumatol. 1985, 1, 123–129, Erratum in: J. Am. Dent. Assoc. 2018, 149, 173. [Google Scholar] [CrossRef] [PubMed]
- Zarow, M.; Hardan, L.; Szczeklik, K.; Bourgi, R.; Cuevas-Suárez, C.E.; Jakubowicz, N.; Nicastro, M.; Devoto, W.; Dominiak, M.; Pytko-Polończyk, J.; et al. Porcelain Veneers in Vital vs. Non-Vital Teeth: A Retrospective Clinical Evaluation. Bioengineering 2023, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Emir, F.; Ayyildiz, S.; Sahin, C. What is the changing frequency of diamond burs? J. Adv. Prosthodont. 2018, 10, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Schmalz, G.; Federlin, M. Partial ceramic crowns: Esthetic and tissue conservative restorations—Part II: Anterior teeth—Laminate Veneers Stoma. Edu. J. 2019, 6, 43–54. [Google Scholar] [CrossRef]
- Chai, S.Y.; Bennani, V.; Aarts, J.M.; Lyons, K. Incisal preparation design for ceramic veneers: A critical review. J. Am. Dent. Assoc. 2018, 149, 25–37. [Google Scholar] [CrossRef]
- Bae, J.-H.; Yi, J.; Kim, S.; Shim, J.-S.; Lee, K.-W. Changes in the cutting efficiency of different types of dental diamond rotary instrument with repeated cuts and disinfection. J. Prosthet. Dent. 2013, 111, 64–70. [Google Scholar] [CrossRef]
- Farah, R.I. Effect of cooling water temperature on the temperature changes in pulp chamber and at handpiece head during high-speed tooth preparation. Restor. Dent. Endod. 2019, 44, e3. [Google Scholar] [CrossRef]
- Chua, H.; Choi, J.J.E.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. The cooling efficiency of different dental high-speed handpiece coolant port designs. Heliyon 2019, 5, e02185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, T.A.; Alsahafi, T.; Wallet, S.M.; Vasconcellos, A. Performance and efficacy of a recently introduced diamond rotary instrument: Cutting, surface preparation, and cleanability. J. Prosthet. Dent. 2022; Epub ahead of print. 2022. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, C.C.; da Cunha, L.F.; Spina, D.R.F.; Bertoli, F.M.d.P.; Feres, R.L.; Fernandes, A.B.F. Cutting efficiency of different diamond burs after repeated cuts and sterilization cycles in autoclave. Indian J. Dent. Res. 2019, 30, 915–919. [Google Scholar] [CrossRef]
- Thomas, M.S.; Kundabala, M. Pulp hyperthermia during tooth preparation: The effect of rotary—instruments, lasers, ultrasonic devices, and airborne particle abrasion. J. Calif. Dent. Assoc. 2012, 40, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Laforgia, P.; Milano, V.; Morea, C.; Desiate, A. Temperature change in the pulp chamber during complete crown preparation. J. Prosthet. Dent. 1991, 65, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Lau, X.E.; Ma, S.; Choi, J.J.E. New aerosol-decreasing dental handpiece functions sufficiently decrease pulp temperature: An in vitro study. J. Prosthodont. 2023. [Google Scholar] [CrossRef]
- ISO 14457:2017; Dentistry—Handpieces and Motors. International Organization for Standardization: Geneva, Switzerland, 2017; Available online: https://www.iso.org/standard/66429.html; https://www.iso.org/obp/ui/#iso:std:iso:14457:ed-2:v1:en. (accessed on 5 May 2023).
- Stanley, H.R. Traumatic capacity of high-speed and ultrasonic dental instrumentation. J. Am. Dent. Assoc. 1961, 63, 749–766. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.N.; Otani, C.; Rode, S.M. High-speed cavity preparation techniques with different water flows. J. Prosthet. Dent. 2002, 87, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Xu, F.; Lu, T.J.; Bai, B.F. A review of heat transfer in human tooth—Experimental characterization and mathematical modeling. Dent. Mater. 2010, 26, 501–513. [Google Scholar] [CrossRef]
- Lynch, C.D.; Roberts, J.L.; Al-Shehri, A.; Milward, P.J.; Sloan, A.J. An ex-vivo model to determine dental pulp responses to heat and light-curing of dental restorative materials. J. Dent. 2018, 79, 11–18. [Google Scholar] [CrossRef]
- Raab, W.H. Temperature related changes in pulpal microcirculation. Proc. Finn. Dent. Soc. Suom. Hammaslaakariseuran Toim. 1992, 88 (Suppl. S1), 469–479. [Google Scholar]
- Soori, A.; Soori, F.; Kowsary, F.; Kasraei, S. Thermal Conductivity and Diffusivity of Human Enamel and Dentin Measured by the Laser Flash Method. Int. J. Thermophys. 2022, 43, 158. [Google Scholar] [CrossRef]
- de Magalhaes, M.F.; Ferreira, R.A.N.; Grossi, P.A.; de Andrade, R.M. Measurement of thermophysical properties of human dentin: Effect of open porosity. J. Dent. 2008, 36, 588–594. [Google Scholar] [CrossRef]
- Kim, S.; Watts, D.C. Exotherm behavior of the polymer-based provisional crown and fixed partial denture materials. Dent. Mater. 2004, 20, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Lipski, M.; Woźniak, K.; Szyszka-Sommerfeld, L.; Borawski, M.; Droździk, A.; Nowicka, A. In Vitro Infrared Thermographic Assessment of Temperature Change in the Pulp Chamber during Provisionalization: Effect of Remaining Dentin Thickness. J. Health Eng. 2020, 2020, 8838329. [Google Scholar] [CrossRef] [PubMed]
Group | Diamond Burs’ Wear | Sample Size | Pulp Chamber Condition |
---|---|---|---|
A | new | N = 10 | N = 5 pulp tissue retained |
N = 5 thermoconductive paste | |||
B | fifth use | N = 10 | N = 5 pulp tissue retained |
N = 5 thermoconductive paste | |||
C | eighth use | N = 10 | N = 5 pulp tissue retained |
N = 5 thermoconductive paste |
Time of Temperature Measurement | |||||||
---|---|---|---|---|---|---|---|
Tooth Condition | Burs’ Wear | Initial | 1 min | 3 min | |||
with pulp | new | N = 5 | 27.45 ± 0.66 | N = 5 | 21.57 ± 0.27 | N = 5 | 20.71 ± 0.20 |
fifth use | N = 5 | 29.15 ± 0.67 | N = 5 | 21.96 ± 0.19 | N = 5 | 20.74 ± 0.31 | |
eighth use | N = 5 | 28.67 ± 1.18 | N = 5 | 21.28 ± 0.37 | N = 5 | 20.35 ± 0.21 | |
with paste | new | N = 5 | 28.99 ± 1.50 | N = 5 | 21.14 ± 0.31 | N = 5 | 20.29 ± 0.25 |
fifth use | N = 5 | 29.77 ± 0.47 | N = 5 | 21.25 ± 0.17 | N = 5 | 20.25 ± 0.17 | |
eighth use | N = 5 | 29.76 ± 0.41 | N = 5 | 21.53 ± 0.40 | N = 5 | 20.21 ± 0.17 |
Factor | F Statistic (df) | p Value | |
---|---|---|---|
Main effects | Time of measurement | 2030.273 (2) | <0.001 ** |
Burs’ wear | 5.784 (2) | 0.005 ** | |
Pulp condition | 1.503 (1) | 0.224 | |
Two-way interactions | Time * Burs | 4.382 (4) | 0.003 ** |
Time * Pulp | 15.398 (2) | <0.001 ** | |
Burs * Pulp | 2.188 (2) | 0.120 | |
Three-way interaction | Time * Burs * Pulp | 0.830 (4) | 0.510 |
Comparisons (Tukey Procedure) | p Value | |
---|---|---|
Time of measurement | Initial vs. at 1 min | <0.001 ** |
Initial vs. at 3 min | <0.001 ** | |
At 1 min vs. at 3 min | <0.001 ** | |
Burs’ wear | New vs. fourth use | 0.003 ** |
New vs. eighth use | 0.154 | |
Fourth use vs. eighth use | 0.287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciora, E.; Miron, M.; Bojoga, D.; Lungeanu, D.; Jivanescu, A. Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study. Dent. J. 2023, 11, 197. https://doi.org/10.3390/dj11080197
Ciora E, Miron M, Bojoga D, Lungeanu D, Jivanescu A. Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study. Dentistry Journal. 2023; 11(8):197. https://doi.org/10.3390/dj11080197
Chicago/Turabian StyleCiora, Edmond, Mariana Miron, Daliana Bojoga, Diana Lungeanu, and Anca Jivanescu. 2023. "Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study" Dentistry Journal 11, no. 8: 197. https://doi.org/10.3390/dj11080197
APA StyleCiora, E., Miron, M., Bojoga, D., Lungeanu, D., & Jivanescu, A. (2023). Evaluation of the Pulp Chamber Temperature during Tooth Veneer Preparation Using Burs with Different Degrees of Wear—A Preliminary In Vitro Study. Dentistry Journal, 11(8), 197. https://doi.org/10.3390/dj11080197