The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Felton, D.A.; Jemt, T.; Koka, S. Rehabilitation of Edentulism and Mortality: A Systematic Review. J. Prosthodont. 2019, 28, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Broers, D.L.M.; Dubois, L.; de Lange, J.; Su, N.; de Jongh, A. Reasons for Tooth Removal in Adults: A Systematic Review. Int. Dent. J. 2022, 72, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Emami, E.; de Souza, R.F.; Kabawat, M.; Feine, J.S. The impact of edentulism on oral and general health. Int. J. Dent. 2013, 2013, 498305. [Google Scholar] [CrossRef]
- Helal, M.A.; Al-Gazzar, A.E.; Abas, M.; Akhtar, S.; Gad, M.M.; Al-Thobity, A.M. Comparative Effect of Different Surface Treatments on the Shear Bond Strength of Two Types of Artificial Teeth Bonded to Two Types of Denture Base Resins. J. Prosthodont. 2022, 31, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Weyant, R.J.; Corby, P.; Kritchevsky, S.B.; Harris, T.B.; Rooks, R.; Rubin, S.M.; Newman, A.B. Edentulism and nutritional status in a biracial sample of well-functioning, community-dwelling elderly: the health, aging, and body composition study. Am. J. Clin. Nutr. 2004, 79, 295–302. [Google Scholar] [CrossRef]
- Roberto, L.L.; Crespo, T.S.; Monteiro-Junior, R.S.; Martins, A.M.E.B.L.; De Paula, A.M.B.; Ferreira, E.F.; Haikal, D.S. Sociodemographic determinants of edentulism in the elderly population: A systematic review and meta-analysis. Gerodontology 2019, 36, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Polzer, I.; Schimmel, M.; Müller, F.; Biffar, R. Edentulism as part of the general health problems of elderly adults. Int. Dent. J. 2010, 60, 143–155. [Google Scholar]
- Müller, F.; Naharro, M.; Carlsson, G.E. What are the prevalence and incidence of tooth loss in the adult and elderly population in Europe? Clin. Oral. Implants Res. 2007, 18 (Suppl. 3), 2–14. [Google Scholar] [CrossRef]
- Al-Rafee, M.A. The epidemiology of edentulism and the associated factors: A literature Review. J. Family Med. Prim. Care 2020, 9, 1841–1843. [Google Scholar] [CrossRef]
- Douglass, C.W.; Shih, A.; Ostry, L. Will there be a need for complete dentures in the United States in 2020? J. Prosthet. Dent. 2002, 87, 5–8. [Google Scholar] [CrossRef]
- Borg-Bartolo, R.; Roccuzzo, A.; Molinero-Mourelle, P.; Schimmel, M.; Gambetta-Tessini, K.; Chaurasia, A.; Koca-Ünsal, R.B.; Tennert, C.; Giacaman, R.; Campus, G. Global prevalence of edentulism and dental caries in middle-aged and elderly persons: A systematic review and meta-analysis. J. Dent. 2022, 127, 104335. [Google Scholar] [CrossRef] [PubMed]
- Paulino, M.R.; Alves, L.R.; Gurgel, B.C.; Calderon, P.S. Simplified versus traditional techniques for complete denture fabrication: A systematic review. J. Prosthet Dent. 2015, 113, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Kawai, Y.; Murakami, H.; Shariati, B.; Klemetti, E.; Blomfield, J.V.; Billette, L.; Lund, J.P.; Feine, J.S. Do traditional techniques produce better conventional complete dentures than simplified techniques? J. Dent. 2005, 33, 659–668. [Google Scholar] [CrossRef]
- Kawai, Y.; Murakami, H.; Takanashi, Y.; Lund, J.P.; Feine, J.S. Efficient resource use in simplified complete denture fabrication. J. Prosthodont. 2010, 19, 512–516. [Google Scholar] [CrossRef]
- Regis, R.R.; Cunha, T.R.; Della Vecchia, M.P.; Ribeiro, A.B.; Silva-Lovato, C.H.; de Souza, R.F. A randomised trial of a simplified method for complete denture fabrication: Patient perception and quality. J. Oral Rehabil. 2013, 40, 535–545. [Google Scholar] [CrossRef]
- Batisse, C.; Nicolas, E. Comparison of CAD/CAM and Conventional Denture Base Resins: A Systematic Review. Appl. Sci. 2021, 11, 5990. [Google Scholar] [CrossRef]
- Gharechahi, J.; Asadzadeh, N.; Shahabian, F.; Gharechahi, M. Dimensional changes of acrylic resin denture bases: Conventional versus injection-molding technique. J. Dent. 2014, 11, 398–405. [Google Scholar]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, C.W.; Kim, Y.S. The Level of Residual Monomer in Injection Molded Denture Base Materials. J. Korean Acad. Prosthodont. 2003, 41, 360–368. [Google Scholar]
- Matos, A.O.; Costa, J.O.; Beline, T.; Ogawa, E.S.; Assunção, W.G.; Mesquita, M.F.; Consani, R.X.; Barão, V.A. Effect of Disinfection on the Bond Strength between Denture Teeth and Microwave-Cured Acrylic Resin Denture Base. J. Prosthodont. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Pero, A.C.; Scavassin, P.M.; Nunes, É.M.; Policastro, V.B.; Giro, G.; Compagnoni, M.A. Bond strength of artificial teeth attached to a microwave-polymerized denture base resin after immersion in disinfectant solutions. J. Prosthodont. 2016, 25, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Marra, J.; de Souza, R.F.; Barbosa, D.B.; Pero, A.C.; Compagnoni, M.A. Evaluation of the bond strength of denture base resins to acrylic resin teeth: Effect of thermocycling. J. Prosthodont. 2009, 18, 438–443. [Google Scholar] [CrossRef]
- Madhav, G.V.; Raj, S.; Yadav, N.; Mudgal, I.; Mehta, N.; Tatwadiya, R. Shear bond strength of acrylic teeth to acrylic denture base after different surface conditioning methods. J. Contemp. Dent. Pract. 2013, 14, 892–897. [Google Scholar] [PubMed]
- Chittaranjan, B.; Taruna, M.; Sudheer, N.; Patil, N.S. Evaluation of shear bond strength of three different types of artificial teeth to heat cure denture base resin: An in vitro study. Indian J. Dent. Res. 2013, 24, 321–325. [Google Scholar] [CrossRef]
- Barbosa, D.B.; Barão, V.A.; Monteiro, D.R.; Compagnoni, M.A.; Marra, J. Bond strength of denture teeth to acrylic resin: Effect of thermocycling and polymerisation methods. Gerodontology 2008, 25, 237–244. [Google Scholar] [CrossRef]
- Sari, F.; Ustun, O.; Kirmali, O. Efficacy of various pretreatments on the bond strength of denture teeth to denture base resins. Photomed. Laser Surg. 2018, 36, 214–220. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Glavina, D.; Ćatić, A.; Čimić, S. Comparison of shear bond strengths of different types of denture teeth to different denture base resins. J. Adv. Prosthodont. 2020, 12, 376–382. [Google Scholar] [CrossRef]
- Al-Somaiday, H.M.; Rafeeq, A.K.; Al-Samaray, M.E. Effect of Different Surface Modifications of Acrylic Teeth and Thermocycling on Shear Bond Strength to Polycarbonate Denture Base Material. Int. J. Biomater. 2022, 2022, 9855836. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Zhou, J.; Lin, W.S.; Tan, J. Duplicating Complete Dentures with Conventional and Digital Methods: Comparisons of Trueness and Efficiency. Dent. J. 2022, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Lümkemann, N.; Eichberger, M.; Wimmer, T. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures. Dent. J. 2017, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Steinmassl, P.A.; Wiedemair, V.; Huck, C.; Klaunzer, F.; Steinmassl, O.; Grunert, I.; Dumfahrt, H. Do CAD/CAM dentures really release less monomer than conventional dentures? Clin. Oral Investig. 2017, 21, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, Y.; Zhang, Y.; Lv, Y.; Zhang, Y.; Hu, P.; Liu, H.; Ma, Z.; Shen, Y. Design and fabrication of complete dentures using CAD/CAM technology. Medicine 2017, 96, e5435. [Google Scholar] [CrossRef]
- AlHelal, A.; AlRumaih, H.S.; Kattadiyil, M.T.; Baba, N.Z.; Goodacre, C.J. Comparison of retention between maxillary milled and conventional denture bases: A clinical study. J. Prosthet. Dent. 2017, 117, 233–238. [Google Scholar] [CrossRef]
- Kanazawa, M.; Inokoshi, M.; Minakuchi, S.; Ohbayashi, N. Trial of a CAD/CAM system for fabricating complete dentures. Dent. Mater. J. 2011, 30, 93–96. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef]
- Ohkubo, C.; Shimpo, H.; Tokue, A.; Park, E.J.; Kim, T.H. Complete denture fabrication using piezography and CAD-CAM: A clinical report. J. Prosthet. Dent. 2018, 119, 334–338. [Google Scholar] [CrossRef]
- Kattadiyil, M.T.; Jekki, R.; Goodacre, C.J.; Baba, N.Z. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J. Prosthet. Dent. 2015, 114, 818–825. [Google Scholar] [CrossRef]
- Kattadiyil, M.T.; AlHelal, A.; Goodacre, B.J. Clinical complications and quality assessments with computer-engineered complete dentures: A systematic review. J. Prosthet. Dent. 2017, 117, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.I.; Cho, I.H.; Lee, J.S. The effect of various foods on the color stability of artificial teeth. J. Korean Acad. Prosthodont. 2009, 47, 82–90. [Google Scholar] [CrossRef]
- Klaiber, D.; Spintzyk, S.; Geis-Gerstorfer, J.; Klink, A.; Unkovskiy, A.; Huettig, F. Bonding Behavior of Conventional PMMA towards Industrial CAD/CAM PMMA and Artificial Resin Teeth for Complete Denture Manufacturing in a Digital Workflow. Materials 2021, 14, 3822. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Moon, Y.H.; Lee, J. Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement. J. Adv. Prosthodont. 2020, 12, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; Cavalcanti, R.V.; Calderon, P.S.; Pernambuco, L.; Alchieri, J.C. Quality of life related to complete denture. Acta Odontol. Latinoam. 2018, 31, 91–96. [Google Scholar] [PubMed]
- AlZaher, Z.A.; Almaskin, D.F.; Qaw, M.S.; Abu Showmi, T.H.; Abualsaud, R.; Akhtar, S.; Gad, M.M. Chemo-Mechanical Approach to Improve Repair Bond Strength of Denture Teeth. Int. J. Dent. 2020, 2020, 8870361. [Google Scholar] [CrossRef]
- Andrade de Freitas, S.L.; Brandt, W.C.; Miranda, M.E.; Vitti, R.P. Effect of thermocycling, teeth, and polymerization methods on bond strength teeth-denture base. Int. J. Dent. 2018, 2018, 2374327. [Google Scholar] [CrossRef]
- Koodaryan, R.; Hafezeqoran, A. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer. J. Adv. Prosthodont. 2016, 8, 504–510. [Google Scholar] [CrossRef]
- Gharebagh, T.G.; Hamedirad, F.; Miruzadeh, K. Comparison of bond strength of acrylic, composite, and nanocomposite artificial teeth to heat-cure acrylic denture base resin. Front. Dent. 2019, 16, 166–172. [Google Scholar] [CrossRef]
- Elkassaby, A.A.; Kandil, M.M.; Alian, G.A. Microtensile vs. Flexural Bond Strength for Bond Strength Assessment. J. Res. Med. Dent. Sci. 2022, 10, 53–58. [Google Scholar]
- Sirisha, K.; Rambabu, T.; Shankar, Y.R.; Ravikumar, P. Validity of bond strength tests: A critical review: Part I. J. Conserv. Dent. 2014, 17, 305–311. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Naveen, B.H.; Patil, N.P. Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology 2006, 23, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Yanikoglu, D.N.; Duymus, D.Z.; Bayindir, D.F. Comparative bond strengths of autopolymerising denture resin and light cured composite resin to denture teeth. Int. Dent. J. 2002, 52, 20–24. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Torii, Y.; Ogawa, T.; Osaka, A.; Van Meerbeek, B. Self-assembled nano-layering at the adhesive interface. J. Dent. Res. 2012, 91, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Akin, H.; Kirmali, O.; Tugut, F.; Coskun, M.E. Effects of different surface treatments on the bond strength of acrylic denture teeth to polymethylmethacrylate denture base material. Photomed. Laser Surg. 2014, 32, 512–516. [Google Scholar] [CrossRef]
- Akin, H.; Tugut, F.; Guney, U.; Akar, T. Shear bond strength of denture teeth to two chemically different denture base resins after various surface treatments. J. Prosthodont. 2014, 23, 152–156. [Google Scholar] [CrossRef]
- Rosca, B.; Ramalho, S.; Sampaio-Fernandes, J.C.; Portugal, J. Reparability of two different CAD/CAM polymer materials using a light-cured composite and universal adhesives. Rev. Port. Estomatol. Med. Dentária Cir. Maxilofac. 2016, 57, 189–196. [Google Scholar] [CrossRef]
- Barragan, G.; Chasqueira, F.; Arantes-Oliveira, S.; Portugal, J. Ceramic repair: Influence of chemical and mechanical surface conditioning on adhesion to zirconia. Oral Health Dent. Manag. 2014, 13, 155–158. [Google Scholar]
- Seabra, B.; Arantes-Oliveira, S.; Portugal, J. Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J. Prosthet. Dent. 2014, 112, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Mine, A.; Kabetani, T.; Kawaguchi-Uemura, A.; Higashi, M.; Tajiri, Y.; Hagino, R.; Imai, D.; Yumitate, M.; Ban, S.; Matsumoto, M.; et al. Effectiveness of current adhesive systems when bonding to CAD/CAM indirect resin materials: A review of 32 publications. Jpn. Dent. Sci. Rev. 2019, 55, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Consani, R.L.; Naoe, H.T.; Mesquita, M.F.; Sinhoreti, M.A.; Mendes, W.B. Effect of ridge-lap surface treatments on the bond of resin teeth to denture base. J. Adhes. Dent. 2011, 13, 287–293. [Google Scholar]
- Srinivasan, M.; Schimmel, M.; Naharro, M.; O’Neill, C.; McKenna, G.; Müller, F. CAD/CAM milled removable complete dentures: time and cost estimation study. J. Dent. 2019, 80, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Cantin, Y.; Mehl, A.; Gjengedal, H.; Müller, F.; Schimmel, M. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin. Oral. Investig. 2017, 21, 2007–2019. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Gjengedal, H.; Cattani-Lorente, M.; Moussa, M.; Durual, S.; Schimmel, M.; Müller, F. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent. Mater. J. 2018, 37, 526–533. [Google Scholar] [CrossRef]
- Bidra, A.S.; Farrell, K.; Burnham, D.; Dhingra, A.; Taylor, T.D.; Kuo, C.L. Prospective cohort pilot study of 2-visit CAD/CAM monolithic complete dentures and implant-retained overdentures: Clinical and patient-centered outcomes. J. Prosthet. Dent. 2016, 115, 578–586.e1. [Google Scholar] [CrossRef]
- Astudillo-Rubio, D.; Delgado-Gaete, A.; Bellot-Arcís, C.; Montiel-Company, J.M.; Pascual-Moscardó, A.; Almerich-Silla, J.M. Mechanical properties of provisional dental materials: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0193162. [Google Scholar]
- Aldegheishem, A.; AlDeeb, M.; Al-Ahdal, K.; Helmi, M.; Alsagob, E.I. Influence of Reinforcing Agents on the Mechanical Properties of Denture Base Resin: A Systematic Review. Polymers 2021, 13, 3083. [Google Scholar] [CrossRef]
Authors, Year | Title | n | Denture Base Material | Denture Teeth Material | Results (MPa) | Conclusions |
---|---|---|---|---|---|---|
Han et al. [45] (2020) | Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement | 10 per group | CAD/CAM (milled) (PMMA Block-pink prepolymerized resin block) | Highly cross-linked acrylic resin teeth (VITA MFT) | 19.61 ± 3.07 | Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods |
CAD/CAM (milled) (PMMA Block-pink prepolymerized resin block | Composite resin teeth (Duracross Physio) | 21.80 ± 3.00 | ||||
CAD/CAM (milled) (PMMA Block-pink prepolymerized resin block | Composite resin teeth (Endura Posterio) | 16.90 ± 3.48 | ||||
CAD/CAM (milled) (Vipi Block-Pink) | Highly cross-linked acrylic resin teeth (VITA MFT) | 19.79 ± 2.41 | ||||
CAD/CAM (milled) (Vipi Block-Pink) | Composite resin teeth (Duracross Physio) | 14.35 ± 4.56 | ||||
CAD/CAM (milled) (Vipi Block-Pink) | Composite resin teeth (Endura Posterio) | 17.20 ± 3.46 | ||||
Heat-polymerized (Vertex Rapid Simplified) | Highly cross-linked acrylic resin teeth (VITA MFT) | 18.84 ± 4.38 | ||||
Heat-polymerized (Vertex Rapid Simplified) | Composite resin teeth (Duracross Physio) | 19.31 ± 5.16 | ||||
Heat-polymerized (Vertex Rapid Simplified) | Composite resin teeth (Endura Posterio) | 10.17 ± 4.34 | ||||
Prpić et al. [29] (2020) | Comparison of shear bond strengths of different types of denture teeth to different denture base resins | 8 per group | CAD/CAM (milled) (IvoBase CAD) | Acrylic teeth (SR Orthotyp S PE) | 12.56 ± 2.92 | Shear bond strength values between CAD/CAM (milled) denture base resins and different types of prefabricated teeth showed high shear bond strength values and are comparable with conventional methods |
CAD/CAM (milled) (IvoBase CAD) | Nanohybrid composite teeth (Phonares II Typ) | 15.04 ± 1.68 | ||||
CAD/CAM (milled) (IvoBase CAD) | Cross-linked teeth (SR Orthotyp DCL) | 12.84 ± 3.21 | ||||
CAD/CAM (milled) (IvoBase CAD) | CAD/CAM (milled) denture teeth (SR Vivodent CAD) | 13.66 ± 4.27 | ||||
Heat-polymerized (ProBase Hot) | Acrylic teeth (SR Orthotyp S PE) | 18.10 ± 2.68 | ||||
Heat-polymerized (ProBase Hot) | Nanohybrid composite teeth (Phonares II Typ) | 12.81 ± 3.91 | ||||
Heat-polymerized (ProBase Hot) | Cross-linked teeth (SR Orthotyp DCL) | 14.29 ± 4.27 | ||||
Helal et al. [4] (2021) | Comparative effect of different surface treatments on the shear bond strength of two types of artificial teeth bonded to two types of denture base resins | 10 per group | CAD/CAM (milled) (AvaDent PMMA Pucks) | Acrylic teeth (Acrostone) | 9.64 ± 0.63 | According to the results, there were significant differences in the SBS between the denture teeth bonded to heat-polymerized and CAD/CAM DBRs |
CAD/CAM (milled) (AvaDent PMMA Pucks) | Composite teeth (Eraylar- ostim) | 7.92 ± 0.61 | ||||
Heat-polymerized (Acrostone) | Acrylic teeth (Acrostone) | 4.65 ± 0.54 | ||||
Heat-polymerized (Acrostone) | Composite teeth (Eraylar- ostim) | 3.28 ± 0.92 |
Authors, Year | Samples Obtained through a Standardized Process | Single Operator of the Machine | Sample Size Calculation | Blinding of the Testing Machine Operator | Specimens, Test, and Formulas According to Standard Specifications | Risk of Bias |
---|---|---|---|---|---|---|
Han et al. [45] (2020) | 0 | 2 | 2 | 2 | 0 | Moderate |
Prpić et al. [29] (2020) | 0 | 2 | 2 | 2 | 0 | Moderate |
Helal et. al. [4] (2021) | 0 | 2 | 2 | 2 | 0 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prpic, V.; Catic, A.; Kraljevic Simunkovic, S.; Bergman, L.; Cimic, S. The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review. Dent. J. 2023, 11, 66. https://doi.org/10.3390/dj11030066
Prpic V, Catic A, Kraljevic Simunkovic S, Bergman L, Cimic S. The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review. Dentistry Journal. 2023; 11(3):66. https://doi.org/10.3390/dj11030066
Chicago/Turabian StylePrpic, Vladimir, Amir Catic, Sonja Kraljevic Simunkovic, Lana Bergman, and Samir Cimic. 2023. "The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review" Dentistry Journal 11, no. 3: 66. https://doi.org/10.3390/dj11030066
APA StylePrpic, V., Catic, A., Kraljevic Simunkovic, S., Bergman, L., & Cimic, S. (2023). The Shear Bond Strength between Milled Denture Base Materials and Artificial Teeth: A Systematic Review. Dentistry Journal, 11(3), 66. https://doi.org/10.3390/dj11030066