Age Assessment in Children and Adolescents by Measuring the Open Apices in Teeth: A New Sardinian Formula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norelli, G.A.; Pinchi, V. Odontologia Forense—Medicina Legale in Odontoiatria—Guida Alla Valutazione del Danno Odontostomatologico; Piccin Editore: Milan, Italy, 2010; ISBN 9788829921058. [Google Scholar]
- Cameriere, R.; De Angelis, D.; Ferrante, L.; Scarpino, F.; Cingolani, M. Age estimation in children by measurement of open apices in teeth: A European formula. Int. J. Leg. Med. 2007, 121, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.M.; Healy, M.J.R.; Goldstein, H.; Cameron, N. Assessment of Skeletal Maturity and Prediction of Adults’ Height (TW3 Method); Saunders: London, UK, 2001. [Google Scholar]
- UN High Commissioner for Refugees (UNHCR). Guidelines on International Protection No 8: Child Asylum Claims under Articles 1(A)2 and 1(F) of the 1951 Convention and/or 1967 Protocol Relating to the Status of Refugees. 2009. Available online: https://www.unhcr.org/publications/legal/50ae46309/guidelines-international-protection-8-child-asylum-claims-under-articles.html (accessed on 5 February 2022).
- Schmeling, A.; Grundmann, C.; Fuhrmann, A.; Kaatsch, H.J.; Knell, B.; Ramsthaler, F.; Reisinger, W.; Riepert, T.; Ritz-Timme, S.; Rosing, F.W.; et al. Criteria for age estimation in living individuals. Int. J. Leg. Med. 2008, 122, 457–460. [Google Scholar] [CrossRef]
- Focardi, M.; Pinchi, V.; De Luca, F.; Norelli, G.A. Age estimation for forensic purposes in Italy: Ethical issues. Int. J. Leg. Med. 2014, 128, 515–522. [Google Scholar] [CrossRef]
- Cunha, E.; Baccino, E.; Martrille, L.; Ramsthaler, F.; Prieto, J.; Schuliar, Y.; Lynnerup, N.; Cattaneo, C. The problem of aging human remains and living individuals: A review. Forensic Sci. Int. 2009, 19, 1–13. [Google Scholar] [CrossRef]
- Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of Hand and Wrist; Stanford University Press: Stanford, CA, USA, 1959. [Google Scholar]
- Angelakopoulos, N.; Galić, I.; Balla, S.B.; Kiş, H.C.; Gómez Jiménez, L.; Zolotenkova, G.; Mohd Yusof, M.Y.P.; Hadzić Selmanagić, A.; Pandey, H.; Palmela Pereira, C.; et al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: A multi-ethnic study sample. Int. J. Leg. Med. 2021, 135, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Schmeling, A.; Schulz, R.; Reisinger, W.; Mühler, M.; Wernecke, K.D.; Geserick, G. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int. J. Leg. Med. 2004, 118, 5–8. [Google Scholar] [CrossRef]
- Demirjian, A.; Goldstein, H.; Tanner, J.M. A new system of dental age assessment. Hum. Biol. 1973, 45, 211–227. [Google Scholar] [PubMed]
- De Donno, A.; Angrisani, C.; Mele, F.; Introna, F.; Santoro, V. Dental age estimation. Demirjian’s versus the other methods in different populations. A literature review. Med. Sci. Law 2021, 61 (Suppl. 1), 125–129. [Google Scholar] [CrossRef] [PubMed]
- Cameriere, R.; Ferrante, L.; Cingolani, M. Age estimation in children by measurement of open apices in teeth. Int. J. Leg. Med. 2006, 120, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Sidore, C.; Busonero, F.; Maschio, A.; Porcu, E.; Naitza, S.; Zoledziewska, M.; Mulas, A.; Pistis, G.; Steri, M.; Danjou, F.; et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat. Genet. 2015, 47, 1272–1281. [Google Scholar] [CrossRef] [Green Version]
- Orrù, V.; Steri, M.; Sole, G.; Sidore, C.; Virdis, F.; Dei, M.; Lai, S.; Zoledziewska, M.; Busonero, F.; Mulas, A.; et al. Genetic variants regulating immune cell levels in health and disease. Cell J. 2013, 155, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Pistis, G.; Porcu, E.; Vrieze, S.I.; Sidore, C.; Steri, M.; Danjou, F.; Busonero, F.; Mulas, A.; Zoledziewska, M.; Maschio, A.; et al. Rare variant genotype imputation with thousands of study-specific whole-genome sequences: Implications for cost-effective study designs. Eur. J. Hum. Genet. 2015, 23, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanna, C.; Scognamiglio, M.; Fiorentino, A.; Corona, A.; Graziani, V.; Caredda, A.; Cortis, P.; Montisci, M.; Ceresola, E.R.; Canducci, F.; et al. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS ONE 2018, 13, e0195168. [Google Scholar] [CrossRef] [Green Version]
- Di Gaetano, C.; Fiorito, G.; Ortu, M.F.; Rosa, F.; Guarrera, S.; Pardini, B.; Cusi, D.; Frau, F.; Barlassina, C.; Troffa, C.; et al. Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection. PLoS ONE 2014, 9, e91237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivieri, A.; Sidore, C.; Achilli, A.; Angius, A.; Posth, C.; Furtwängler, A.; Brandini, S.; Capodiferro, M.R.; Gandini, F.; Zoledziewska, M.; et al. Mitogenome Diversity in Sardinians: A Genetic Window onto an Island’s Past. Mol. Biol. Evol. 2017, 34, 1230–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, J.H.; Posth, C.; Ringbauer, H.; Lai, L.; Skeates, R.; Sidore, C.; Beckett, J.; Furtwängler, A.; Olivieri, A.; Chiang, C.; et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 2020, 11, 939. [Google Scholar] [CrossRef]
- Steri, M.; Orrù, V.; Idda, M.L.; Pitzalis, M.; Pala, M.; Zara, I.; Sidore, C.; Faà, V.; Floris, M.; Deiana, M.; et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk. N. Engl. J. Med. 2017, 376, 1615–1626. [Google Scholar] [CrossRef]
- Cucca, F.; Lampis, R.; Frau, F.; Macis, D.; Angius, E.; Masile, P.; Chessa, M.; Frongia, P.; Silvetti, M.; Cao, A.; et al. The distribution of DR4 haplotypes in Sardinia suggests a primary association of type I diabetes with DRB1 and DQB1 loci. Hum. Immunol. 1995, 43, 301–308. [Google Scholar] [CrossRef]
- Zoledziewska, M.; Sidore, C.; Chiang, C.; Sanna, S.; Mulas, A.; Steri, M.; Busonero, F.; Marcus, J.H.; Marongiu, M.; Maschio, A.; et al. Height-reducing variants and selection for short stature in Sardinia. Nat. Genet. 2015, 47, 1352–1356. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Miles, J. R Squared, Adjusted R Squared. In Wiley StatsRef: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Townsend, G.; Hughes, T.; Luciano, M.; Bockmann, M.; Brook, A. Genetic and environmental influences on human dental variation: A critical evaluation of studies involving twins. Arch. Oral Biol. 2009, 54 (Suppl. 1), S45–S51. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.; Maccioni, P.; Zedda, P.; Cabitza, F.; Cortis, I.M. Dental development in Sardinian children. J. Craniofacial Genet. Dev. Biol. 1993, 13, 109–116. [Google Scholar]
- Moorrees, C.F.; Fanning, E.A.; Hunt, E.E., Jr. Age variation of formation stages for ten permanent teeth. J. Dent. Res. 1963, 42, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Spinas, E.; De Luca, S.; Lampis, L.; Velandia Palacio, L.A.; Cameriere, R. Is the third molar maturity index (I3M) useful for a genetic isolate population? Study of a Sardinian sample of children and young adults. Int. J. Leg. Med. 2018, 132, 1787–1794. [Google Scholar] [CrossRef]
- Marinkovic, N.; Milovanovic, P.; Djuric, M.; Nedeljkovic, N.; Zelic, K. Dental maturity assessment in Serbian population: A comparison of Cameriere’s European formula and Willems’ method. Forensic Sci. Int. 2018, 288, 331.e1–331.e5. [Google Scholar] [CrossRef]
- Manjrekar, S.; Deshpande, S.; Katge, F.; Jain, R.; Ghorpade, T. Age Estimation in Children by the Measurement of Open Apices in Teeth: A Study in the Western Indian Population. Int. J. Dent. 2022, 2022, 9513501. [Google Scholar] [CrossRef]
- Cugati, N.; Kumaresan, R.; Srinivasan, B.; Karthikeyan, P. Dental age estimation of growing children by measurement of open apices: A Malaysian formula. J. Forensic Dent. Sci. 2015, 7, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Kış, H.C.; Görürgöz, C.; Emin, M.B.; Canger, M.; Öztaş, B. Evaluation of the Willems and Cameriere’s dental age estimation methods in Turkish children–A modified version of Cameriere’s method. Forensic Sci. Int. 2018, 2, 100–105. [Google Scholar] [CrossRef]
- Hostiuc, S.; Diaconescu, S.; Rusu, M.C.; Negoi, I. Age Estimation Using the Cameriere Methods of Open Apices: A Meta-Analysis. Healthcare 2021, 9, 237. [Google Scholar] [CrossRef]
- Ozveren, N.; Serindere, G. Comparison of the applicability of Demirjian and Willems methods for dental age estimation inchildren from the Thrace region, Turkey. Forensic Sci. Int. 2018, 285, 38–43. [Google Scholar] [CrossRef]
- Angelakopoulos, N.; De Luca, S.; Palacio, L.; Coccia, E.; Ferrante, L.; Pinchi, V.; Cameriere, R. Age estimation by measuring open apices in teeth: A new formula for two samples of South African black and white children. Int. J. Leg. Med. 2019, 133, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.C.; Yan, C.X.; Lin, X.W.; Zhou, H.; Li, J.P.; Pan, F.; Zhang, Z.Y.; Wei, L.; Tang, Z.; Chen, T. Age estimation in northern Chinese children by measurement of open apices in tooth roots. Int. J. Leg. Med. 2015, 129, 179–186. [Google Scholar] [CrossRef]
- Jorde, L.B.; Watkins, W.S.; Bamshad, M.J.; Dixon, M.E.; Ricker, C.E.; Seielstad, M.T.; Batzer, M.A. The distribution of human genetic diversity: A comparison of mitochondrial, autosomal, and Y-chromosome data. Am. J. Hum. Genet. 2000, 66, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhamo, B.; Kragt, L.; Grgic, O.; Vucic, S.; Medina-Gomez, C.; Rivadeneira, F.; Jaddoe, V.W.V.; Wolvius, E.B.; Ongkosuwito, E.M. Ancestry and dental development: A geographic and genetic perspective. Am. J. Phys. Anthropol. 2017, 165, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age | Males | Females | Total |
---|---|---|---|
6–7 | 20 | 17 | 37 |
8–9 | 18 | 19 | 37 |
10–11 | 18 | 18 | 36 |
12–13 | 19 | 18 | 37 |
14–15 | 17 | 18 | 35 |
16 | 10 | 10 | 20 |
Total | 102 | 100 | 202 |
Value | Standard Error | t Value | p | |
---|---|---|---|---|
Constant | 10.372 | 0.320 | 32.409 | <0.001 |
g | 0.469 | 0.143 | 3.271 | 0.001 |
N0 | 0.810 | 0.057 | 14.184 | <0.001 |
s | −1.079 | 0.259 | −4.156 | <0.001 |
s∙N0 | −0.398 | 0.102 | −3.911 | <0.001 |
x5 | −0.326 | 1.028 | −0.317 | 0.752 |
Formula | Intra-Class Correlation | 95% CI Lower Limit | 95% CI Upper Limit | p | |
---|---|---|---|---|---|
Sardinian | Single measure | 0.914 *** | 0.760 * | 0.962 ** | <0.0001 |
Sardinian | Average measures | 0.955 *** | 0.863 ** | 0.981 *** | <0.0001 |
Italian | Single measure | 0.852 ** | 0.130 | 0.955 *** | <0.0001 |
Italian | Average measures | 0.920 *** | 0.231 | 0.977 *** | <0.0001 |
European | Single measure | 0.890 ** | 0.744 * | 0.948 *** | <0.0001 |
European | Average measures | 0.942 *** | 0.853 ** | 0.973 *** | <0.0001 |
Value | Standard Error | t Value | p | |
---|---|---|---|---|
Sardinian | 0.810 | 0.057 | 14.184 | <0.001 |
Italian | 0.674 | 0.040 | 17.02 | <0.001 |
European | 0.835 | 0.014 | 61.3 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinas, E.; Melis, G.; Zerman, N.; De Luca, S.; Cameriere, R. Age Assessment in Children and Adolescents by Measuring the Open Apices in Teeth: A New Sardinian Formula. Dent. J. 2022, 10, 50. https://doi.org/10.3390/dj10040050
Spinas E, Melis G, Zerman N, De Luca S, Cameriere R. Age Assessment in Children and Adolescents by Measuring the Open Apices in Teeth: A New Sardinian Formula. Dentistry Journal. 2022; 10(4):50. https://doi.org/10.3390/dj10040050
Chicago/Turabian StyleSpinas, Enrico, Giorgia Melis, Nicoletta Zerman, Stefano De Luca, and Roberto Cameriere. 2022. "Age Assessment in Children and Adolescents by Measuring the Open Apices in Teeth: A New Sardinian Formula" Dentistry Journal 10, no. 4: 50. https://doi.org/10.3390/dj10040050
APA StyleSpinas, E., Melis, G., Zerman, N., De Luca, S., & Cameriere, R. (2022). Age Assessment in Children and Adolescents by Measuring the Open Apices in Teeth: A New Sardinian Formula. Dentistry Journal, 10(4), 50. https://doi.org/10.3390/dj10040050