Last-Mile Decomposition Heuristics with Multi-Period Embedded Optimization Models
Abstract
1. Introduction
2. A Review of Relevant Research on Multiple Traveling Salesmen Problems
3. Problem Definition
4. Proposed Approaches for Last-Mile Multiple Traveling Deliverymen Problem (mTDP)
4.1. Multi-Period MIP Model for mTDP
4.2. Decomposed Computational Optimization for Solving mP-mTDP
4.2.1. DC-2mPTD Pseudo Code
4.2.2. Multi-Period Multiple Traveling-Salesmen Optimization Model
5. Computational Work and Analysis
6. Conclusions
Funding
Conflicts of Interest
References
- Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. OMEGA Int. J. Manag. Sci. 2006, 34, 209–219. [Google Scholar] [CrossRef]
- Reus, B. How to Solve NP-Complete Problems. In Limits of Computation; Undergraduate Topics in Computer Science; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Bland, R.E.; Shallcross, D.E. Large traveling salesman problem arising from experiments in X-ray crystallography: A preliminary report on computation. Oper. Res. Lett. 1989, 8, 125–128. [Google Scholar] [CrossRef]
- Ratliff, H.D.; Rosenthal, A.S. Order-Picking in a Rectangular Warehouse: A Solvable Case for the Travelling Salesman Problem. Oper. Res. 1983, 31, 507–521. [Google Scholar] [CrossRef]
- Basu, A.; Elnagar, A.; Al-Hajj, A. Efficient coordinated motion. Math. Comput. Model. 2000, 31, 39–53. [Google Scholar] [CrossRef]
- Macharis, C.; Bontekoning, Y.M. Opportunities for OR in intermodal freight transport research: A review. Eur. J. Oper. Res. 2004, 153, 400–416. [Google Scholar] [CrossRef]
- Wang, X.; Regan, A.C. Local truckload pickup and delivery with hard time window constraints. Transp. Res. Part B 2002, 36, 97–112. [Google Scholar] [CrossRef]
- Carter, A.E.; Ragsdale, C.T. Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega 2002, 30, 415–421. [Google Scholar] [CrossRef]
- Gorenstein, S. Printing press scheduling for multi-edition periodicals. Manag. Sci. 1970, 16, 373–383. [Google Scholar] [CrossRef]
- Tang, L.; Liu, J.; Rong, A.; Yang, Z. A multiple traveling salesman problem model for hot rolling scheduling in Shangai Baoshan Iron & Steel Complex. Eur. J. Oper. Res. 2000, 124, 267–282. [Google Scholar]
- Angel, R.D.; Caudle, W.L.; Noonan, R.; Whinston, A. Computer assisted school bus scheduling. Manag. Sci. 1972, 18, 279–288. [Google Scholar] [CrossRef]
- Svestka, J.A.; Huckfeldt, V.E. Computational experience with an m-salesman traveling salesman algorithm. Manag. Sci. 1973, 19, 790–799. [Google Scholar] [CrossRef]
- Brummit, B.; Stentz, A. GRAMMPS: A generalized mission planner for multiple mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998. [Google Scholar]
- Saleh, H.A.; Chelouah, R. The design of the global navigation satellite system surveying networks using genetic algorithms. Eng. Appl. Artif. Intell. 2004, 17, 111–122. [Google Scholar] [CrossRef]
- Calvo, R.W.; Cordone, R. A heuristic approach to the overnight security service problem. Comput. Oper. Res. 2003, 30, 1269–1287. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, Y. A crane scheduling method for port container terminals. Eur. J. Oper. Res. 2004, 156, 752–768. [Google Scholar] [CrossRef]
- Granado, I.; Hernando, L.; Galparsoro, I.; Gabiña, G.; Groba, C.; Prellezo, R.; Fernandes, J. Towards a framework for fishing route optimization decision support systems: Review of the state-of-the-art and challenges. J. Clean. Prod. 2021, 320, 128661. [Google Scholar] [CrossRef]
- Mitrović-Minić, S.; Krishnamurti, R.; Laporte, G. Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transp. Res. 2004, 28, 669–685. [Google Scholar] [CrossRef]
- Mole, R.H.; Johnson, D.G.; Wells, K. Combinatorial analysis for route first-cluster second vehicle routing. Omega 1983, 11, 507–512. [Google Scholar] [CrossRef]
- Ralphs, T.K. Parallel branch and cut for capacitated vehicle routing. Parallel Comput. 2003, 29, 607–629. [Google Scholar] [CrossRef]
- Öncan, T.; Altınel, I.K.; Laporte, G. A comparative analysis of several asymmetric traveling salesman problem formulations. Comput. Oper. Res. 2009, 36, 637–654. [Google Scholar] [CrossRef]
- Orman, A.J.; Williams, H.P. A Survey of Different Integer Programming Formulations of the Travelling Salesman Problem; Springer: Berlin/Heidelberg, Germany, 2006; pp. 91–104. [Google Scholar]
- Applegate, D.L.; Bixby, R.E.; Chvátal, V.; Cook, W.J. Implementing the Dantzig–Fulkerson–Johnson algorithm for large scale traveling salesman problems. Math. Program. Ser. B 2003, 97, 91–153. [Google Scholar] [CrossRef]
- Christofides, N.; Mingozzi, A.; Toth, P. Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Math. Program. 1981, 20, 255–282. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a large-scale traveling salesman problem. Oper. Res. 1954, 2, 393–410. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Bhave, P.R. Integer programming formulations of vehicle routing problems. Eur. J. Oper. Res. 1985, 20, 58–67. [Google Scholar] [CrossRef]
- Laporte, G.; Nobert, Y. A cutting planes algorithm for the m-salesmen problem. J. Oper. Res. Soc. 1980, 31, 1017–1023. [Google Scholar] [CrossRef]
- Balas, E.; Toth, P. Branch and bound methods. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley: Chichester, UK, 1985; pp. 361–401. [Google Scholar]
- Fischetti, M.; Toth, P. An additive bounding procedure for the asymmetric traveling salesman problem. Math. Program. Ser. A B 1992, 53, 173–197. [Google Scholar] [CrossRef]
- Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 345–358. [Google Scholar] [CrossRef]
- Carpaneto, G.; Dell’Amico, M.; Toth, P. Exact solution of large-scale, asymmetric travelling salesman problems. ACM Trans. Math. Softw. 1995, 21, 394–409. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Toth, P. Algorithms and codes for dense assignment problems: The state of the art. Discret. Appl. Math. 2000, 100, 17–48. [Google Scholar] [CrossRef]
- Gilbert, K.; Hofstra, R. A New Multiperiod Multiple Traveling Salesman Problem with Heuristic and Application to a Scheduling Problem. Decis. Sci. 1992, 32, 250–259. [Google Scholar] [CrossRef]
- Bagagiolo, F.; Benetton, M. About an Optimal Visiting Problem. Appl. Math. Optim. 2012, 65, 31–51. [Google Scholar] [CrossRef]
- Vairaktarakis, G.L. Simple Algorithms for Gilmore–Gomory’s Traveling Salesman and Related Problems. J. Sched. 2003, 6, 499–520. [Google Scholar] [CrossRef]
- Kalczynski, P.J.; Kamburowski, J. Two-Machine Stochastic Flow Shops with Blocking and the Traveling Salesman Problem. J. Sched. 2005, 8, 529–536. [Google Scholar] [CrossRef]
- Applegate, D.L.; Bixby, R.E.; Chvátal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study; Princeton University Press: Princeton, NJ, USA, 2006; ISBN 978-0-691-12993-8. [Google Scholar]
- Padberg, M.W.; Hong, S. On the symmetric travelling salesman problem: A computational study. Math. Program. Study 1980, 12, 78–107. [Google Scholar]
- Padberg, M.; Grötschel, M. Polyhedral computations. In The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley: Chichester, UK, 1985; pp. 307–360. [Google Scholar]
- Padberg, M.; Rinaldi, G. A branch-and-cut algorithm for the resolution of largescale symmetric traveling salesman problems. SIAM Rev. 1991, 33, 60–100. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Zhou, G.; Deng, W.; Luo, Q. Discrete Mayfly Algorithm for spherical asymmetric traveling salesman problem. Expert Syst. Appl. 2023, 221, 119765. [Google Scholar] [CrossRef]
- Groba, C.; Antonio, S.; Xosé, V. Integrating forecasting in metaheuristic methods to solve dynamic routing problems: Evidence from the logistic processes of tuna vessels. Eng. Appl. Artif. Intell. 2018, 76, 55–66. [Google Scholar] [CrossRef]
- Zhou, H.; Song, M.; Pedrycz, W. A comparative study of improved GA and PSO in solving multipletraveling salesmen problem. Appl. Soft Comput. 2018, 64, 564–580. [Google Scholar] [CrossRef]
- Lei, S.; Mark, K.; Moustapha, D. The indefinite period traveling salesman problem. Eur. J. Oper. Res. 2018, 270, 1171–1181. [Google Scholar] [CrossRef]
- Guilherme, D.; Alberto, F.; Olinto, C. The Multiple Traveling Salesman Problem with Backup Coverage. Electron. Notes Discret. Math. 2018, 66, 135–142. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Z.; Zhang, S.; Wang, W.; Yang, S.; Cai, Y. Composite multi-objective optimization on a new collaborative vehicle routing problem with shared carriers and depots. J. Clean. Prod. 2020, 274, 122593. [Google Scholar] [CrossRef]
- Hassanpour, S.; Ke, G.; Tulett, D. A time-dependent location-routing problem of hazardous material transportation with edge unavailability and time window. J. Clean. Prod. 2021, 322, 128951. [Google Scholar] [CrossRef]
- Kuo, R.; Lu, S.; Lai, P.; Mara, S. Vehicle routing problem with drones considering time windows. Expert Syst. Appl. 2022, 191, 116264. [Google Scholar] [CrossRef]
- Miller, C.; Tucker, A.; Zemlin, R. Integer programming formulations and travelling salesman problems. J. Assoc. Comput. Mach. 1960, 7, 326–329. [Google Scholar] [CrossRef]
Description | Type | |
---|---|---|
I | The set of all points visited by deliverymen, including delivery-points and main depot | SE |
A subset of delivery-points visited by deliverymen, excluding the distribution center | SE | |
K | The set of all deliverymen | SE |
k | Deliverymen index; k K | IN |
i/j | The delivery-point index; i and j I or | IN |
M | An arbitrarily big number | IP |
Tij | The traveling time between delivery-point i and j | IP |
Sj | The average service/delivery time at delivery-point j | IP |
hk | The working time available for each deliveryman k per period (day) | IP |
Oi | The relative position of a delivery-point i in set I | IP |
|I| | The cardinality of set I. | IP |
|K| | The cardinality of set K. | IP |
D | The set of all working days | SE |
|D| | The cardinality of set D. | IP |
d | Period/day index; d D | IN |
xdkij | Equal to 1 if deliveryman k travels from delivery-point i to j on day d, and 0 otherwise | DV |
ydk | Equal to 1 if deliveryman k is assigned to visit any delivery-point on day d, and 0 otherwise | DV |
qi | The required number of deliveries/visits by deliverymen to delivery-point i | IP |
udk | The total time spent by deliveryman k on day d to visit the assigned delivery-points | DV |
Set Cardinalities | Constraints and Variables | Solution | |||||
---|---|---|---|---|---|---|---|
|I’| | |K| | |D| | No of Constraints | No of Variables | Optimal No. of Salesmen | CPU Time (s) | Memory Usage (MB) |
40 | 3 | 5 | 33,191 | 24,618 | 2 | 58.672 | 6 |
80 | 4 | 5 | 162,708 | 129,624 | 4 | 1221.047 | 17 |
100 | 6 | 5 | 354,422 | 303,036 | Resource limit exceeded |
Description | Type | |
---|---|---|
H | The working time available for a given deliveryman in set K per period | IP |
Ni | The number of scheduled visits to delivery-point i | DP |
Rd | The relative position of a period d in set D | IP |
The traveling time between location i and j (is to be updated iteratively) | DP | |
U | The total time spent by individual deliveryman to visit the assigned delivery-points in a given period | DV |
Xij | Equal to 1 if individual deliveryman travels from delivery-point i to j in a given period and 0 otherwise | DV |
Delivery Point | No. of Visits | Service Time | Travel Times Between Delivery-Points | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depot | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||
Depot | - | - | 32 | 26 | 25 | 24 | 17 | 33 | 39 | 25 | 34 | 39 | 17 | 27 | 40 | 14 | 14 | 10 | 31 | 28 | 36 | 15 | 25 |
1 | 3 | 32 | 35 | 24 | 24 | 34 | 16 | 36 | 17 | 12 | 28 | 32 | 11 | 25 | 15 | 34 | 20 | 16 | 39 | 19 | 39 | 18 | 34 |
2 | 1 | 14 | 17 | 35 | 27 | 34 | 22 | 40 | 23 | 30 | 35 | 40 | 36 | 40 | 11 | 35 | 28 | 27 | 25 | 10 | 21 | 36 | 30 |
3 | 2 | 21 | 35 | 25 | 31 | 15 | 14 | 16 | 17 | 33 | 13 | 25 | 29 | 11 | 27 | 31 | 27 | 39 | 13 | 24 | 22 | 16 | 35 |
4 | 3 | 39 | 14 | 30 | 19 | 29 | 31 | 37 | 36 | 11 | 24 | 37 | 39 | 14 | 33 | 28 | 29 | 20 | 13 | 32 | 34 | 18 | 13 |
5 | 3 | 15 | 30 | 26 | 33 | 20 | 40 | 16 | 30 | 36 | 12 | 25 | 15 | 11 | 31 | 27 | 29 | 24 | 14 | 27 | 36 | 30 | 34 |
6 | 1 | 15 | 15 | 14 | 33 | 29 | 15 | 14 | 17 | 25 | 22 | 32 | 17 | 15 | 25 | 35 | 29 | 40 | 20 | 11 | 27 | 32 | 24 |
7 | 1 | 27 | 11 | 15 | 40 | 31 | 14 | 36 | 18 | 11 | 18 | 34 | 29 | 37 | 40 | 16 | 29 | 26 | 22 | 40 | 17 | 10 | 11 |
8 | 3 | 23 | 29 | 14 | 19 | 22 | 14 | 20 | 26 | 35 | 35 | 38 | 30 | 33 | 18 | 32 | 13 | 12 | 22 | 29 | 16 | 37 | 23 |
9 | 2 | 43 | 11 | 14 | 38 | 23 | 37 | 29 | 13 | 32 | 37 | 35 | 29 | 24 | 39 | 14 | 11 | 14 | 28 | 24 | 12 | 33 | 30 |
10 | 2 | 10 | 30 | 37 | 27 | 12 | 17 | 26 | 13 | 20 | 22 | 34 | 19 | 36 | 35 | 10 | 28 | 23 | 18 | 12 | 22 | 29 | 31 |
11 | 3 | 14 | 35 | 12 | 25 | 38 | 16 | 16 | 17 | 26 | 24 | 37 | 36 | 17 | 21 | 32 | 17 | 34 | 18 | 13 | 33 | 31 | 18 |
12 | 3 | 25 | 24 | 37 | 33 | 38 | 11 | 23 | 35 | 33 | 25 | 39 | 37 | 17 | 31 | 21 | 32 | 28 | 12 | 18 | 34 | 35 | 39 |
13 | 2 | 37 | 14 | 26 | 26 | 40 | 33 | 20 | 26 | 21 | 22 | 40 | 26 | 29 | 31 | 21 | 20 | 30 | 24 | 27 | 27 | 38 | 15 |
14 | 1 | 39 | 17 | 33 | 12 | 39 | 25 | 16 | 19 | 33 | 13 | 36 | 15 | 36 | 12 | 20 | 21 | 37 | 39 | 23 | 32 | 11 | 30 |
15 | 2 | 39 | 38 | 28 | 36 | 11 | 36 | 18 | 20 | 10 | 28 | 32 | 11 | 32 | 16 | 14 | 25 | 20 | 23 | 34 | 33 | 18 | 31 |
16 | 2 | 7 | 35 | 33 | 38 | 25 | 37 | 23 | 32 | 18 | 27 | 36 | 17 | 26 | 11 | 37 | 23 | 13 | 10 | 29 | 37 | 23 | 23 |
17 | 3 | 18 | 16 | 18 | 30 | 11 | 34 | 13 | 26 | 24 | 18 | 17 | 31 | 21 | 20 | 18 | 35 | 30 | 19 | 11 | 17 | 37 | 22 |
18 | 3 | 20 | 37 | 35 | 11 | 12 | 19 | 17 | 29 | 13 | 18 | 32 | 36 | 27 | 15 | 25 | 23 | 13 | 13 | 17 | 40 | 18 | 27 |
19 | 2 | 14 | 22 | 29 | 25 | 36 | 14 | 10 | 31 | 32 | 11 | 14 | 35 | 33 | 40 | 26 | 18 | 14 | 27 | 40 | 33 | 20 | 40 |
20 | 3 | 29 | 35 | 34 | 37 | 24 | 20 | 13 | 39 | 21 | 24 | 30 | 32 | 20 | 10 | 24 | 35 | 18 | 32 | 26 | 16 | 29 | 29 |
Case No. | No. of Delivery-Points | Average Service Time | Average No. of Required Visits | Average Traveling Time |
---|---|---|---|---|
1 | 20 | 23.55 | 2.25 | 25.19 |
2 | 40 | 24.18 | 2.15 | 24.61 |
3 | 60 | 24.10 | 2.17 | 24.91 |
4 | 80 | 24.46 | 2.09 | 24.90 |
5 | 100 | 25.75 | 2.05 | 24.89 |
6 | 120 | 25.83 | 2.02 | 24.99 |
7 | 140 | 25.95 | 2.03 | 25.03 |
8 | 160 | 25.45 | 2.02 | 25.03 |
9 | 180 | 25.49 | 1.98 | 24.99 |
10 | 200 | 25.46 | 1.99 | 25.01 |
11 | 250 | 24.96 | 2.00 | 25.00 |
12 | 300 | 25.14 | 1.99 | 25.01 |
13 | 350 | 25.18 | 1.99 | 25.01 |
14 | 400 | 25.06 | 1.99 | 25.01 |
15 | 450 | 24.89 | 1.99 | 25.00 |
16 | 500 | 25.11 | 1.99 | 25.00 |
17 | 550 | 25.14 | 1.98 | 25.00 |
18 | 600 | 24.87 | 2.00 | 25.00 |
19 | 650 | 24.83 | 2.02 | 24.99 |
20 | 700 | 24.74 | 2.02 | 24.99 |
21 | 750 | 24.83 | 2.01 | 24.98 |
22 | 800 | 24.76 | 2.01 | 24.99 |
23 | 850 | 24.86 | 2.02 | 24.99 |
24 | 900 | 24.86 | 2.01 | 24.99 |
25 | 950 | 24.95 | 2.02 | 24.99 |
26 | 1000 | 24.99 | 2.02 | 24.99 |
Case No. | No. of Delivery-Points | Optimal No. of Salesmen | CPU Time (s) | Memory Usage (MB) |
---|---|---|---|---|
1 | 20 | 2 | 1.0 | 3 |
2 | 40 | 2 | 1.9 | 3 |
3 | 60 | 3 | 3.3 | 3 |
4 | 80 | 4 | 9.4 | 4 |
5 | 100 | 5 | 25.3 | 5 |
6 | 120 | 6 | 48.3 | 6 |
7 | 140 | 7 | 22.2 | 7 |
8 | 160 | 8 | 122.0 | 9 |
9 | 180 | 9 | 184.0 | 10 |
10 | 200 | 9 | 266.2 | 12 |
11 | 250 | 11 | 867.2 | 17 |
12 | 300 | 14 | 2591.4 | 22 |
13 | 350 | 16 | 3216.9 | 30 |
14 | 400 | 18 | 6468.2 | 37 |
15 | 450 | 20 | 8304.0 | 47 |
16 | 500 | 21 | 12,507.8 | 57 |
17 | 550 | 24 | 17,994.2 | 68 |
18 | 600 | 25 | 31,511.4 | 81 |
19 | 650 | 28 | 40,583.3 | 95 |
20 | 700 | 30 | 42,660.2 | 109 |
21 | 750 | 32 | 42,832.8 | 125 |
22 | 800 | 34 | 47,058.8 | 142 |
23 | 850 | 37 | 72,547.6 | 160 |
24 | 900 | 37 | 77,787.2 | 179 |
25 | 950 | 41 | 75,594.8 | 198 |
26 | 1000 | 43 | 81,598.8 | 220 |
No. of Delivery-Points | Optimal No. of Salesmen | CPU Computing Time (s) | Memory Usage (MB) | |||
---|---|---|---|---|---|---|
mP-mTD | DC-2mPTD | mP-mTD | DC-2mPTD | mP-mTD | DC-2mPTD | |
40 | 2 | 2 | 58.672 | 1.9 | 6 | 3 |
80 | 4 | 4 | 1221.047 | 9.4 | 17 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed Osman, M. Last-Mile Decomposition Heuristics with Multi-Period Embedded Optimization Models. Math. Comput. Appl. 2025, 30, 90. https://doi.org/10.3390/mca30040090
Saeed Osman M. Last-Mile Decomposition Heuristics with Multi-Period Embedded Optimization Models. Mathematical and Computational Applications. 2025; 30(4):90. https://doi.org/10.3390/mca30040090
Chicago/Turabian StyleSaeed Osman, Mojahid. 2025. "Last-Mile Decomposition Heuristics with Multi-Period Embedded Optimization Models" Mathematical and Computational Applications 30, no. 4: 90. https://doi.org/10.3390/mca30040090
APA StyleSaeed Osman, M. (2025). Last-Mile Decomposition Heuristics with Multi-Period Embedded Optimization Models. Mathematical and Computational Applications, 30(4), 90. https://doi.org/10.3390/mca30040090