Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- decomposition strategy,
- (2)
- perturbation function, and
- (3)
- probability of acceptance.
2.1. Decomposition Strategy
2.2. Perturbation Function
2.2.1. Classical Genetic Operators
2.2.2. Differential Evolution Operators
2.3. Probability of Acceptance
2.4. Multi-Objective Simulated Annealing Based on Decomposition Framework
2.4.1. MOSA/D-CGO Algorithm
Algorithm 1 MOSA/D-CGO | |
Input: MOP, Initial temperature Ti, Factor α, Markov chain L, Final temperatura Tf, Size of population N, Maximal function evaluations MFE | |
Output: Last generation of P | |
1 | To initialize: population P(N), weighted vectors v, solution Scurrent, solution Scand, reference point z, temperature T = Ti |
2 | FE = N |
3 | while (T ≥ Tf) y (FE ≤ MFE) |
4 | for i = 1 to N |
5 | Scurrent = Pi |
6 | for j = 1 to L |
7 | Scand = PerturbationCGO(Scurrent, P) |
8 | p = BoltzmannProbability(Scand, Scurrent, T) |
9 | if g(Scand, vi, z) < g(Pi, vi, z) |
10 | Pi = Scand |
11 | if g(Scand, vi, z) < g(Scurrent, vi, z) or U(0,1) < p |
12 | Scurrent = Scand |
13 | z = ObtainReferencePoint (Scand) |
14 | j = j +1 |
15 | i = i +1 |
16 | FE = N × L |
17 | T = T × α |
18 | return P |
- Start a second loop that proceeds through all the sub-problems (Line 4),
- Update FE = N × L as the multiplication of the number of sub-problems by the annealing cycles (Line 16),
- The temperature T is updated. It is multiplied by the temperature drop factor α (Line 17).
- The second loop (from 1 to N sub-problems) has the following tasks (Line 4):
- The Scurrent solution takes as its value the solution stored in Pi (Line 5),
- The ith sub-problem is annealed for L cycles (Lines 6–14) in the third loop,
- The sub-problem counter i is updated.
- The third loop (annealing process) works as follows (Lines 6–14):
- Scand is obtained by perturbation of Scurrent (Line 7),
- The Boltzmann probability p of Scand is computed based on Equation (6) (Line 8),
- The Tchebycheff function g is calculated for Scand and Pi. If g (Scand) is less than g (Pi), then Scand is a better solution than Pi. Then Pi takes the value of Scand (Lines 9–10).
- The Tchebycheff function g is calculated for Scand and Scurrent. If g (Scand) is less than g (Scurrent), then Scurrent takes the value of Scand (Lines 11–12).
- The reference point z is updated (Line 13).
- The Markov chain counter j is updated (Line 14)
- At the end of the main loop, the last generation of P is returned, and the algorithm ends (Line 18).
Algorithm 2 PerturbationCGO | |
Input: Current solution Scurrent, population P | |
Output: Candidate Solution Scand | |
1 | Initialize solutions: parent1, parent2, child |
2 | parent1 = Scurrent |
3 | parent2 = RandomSelection(P) |
4 | child = SBX(parent1, parent2) |
5 | Scand = PolynomialMutation(child) |
6 | return Scand |
2.4.2. MOSAD-DE Algorithm
Algorithm 3 MOSA/D-DE | |
Input: MOP, Initial temperature Ti, Factor α, Markov chain L, Final temperatura Tf, Size of population N, Maximal function evaluations MFE | |
Output: Last generation of P | |
1 | To initialize: population P(N), weighted vectors v, solution Scurrent, solution Scand, reference point z, temperature T = Ti |
2 | FE = N |
3 | while (T ≥ Tf) y (FE ≤ MFE) |
4 | for i = 1 to N |
5 | Scurrent = Pi |
6 | for j = 1 to L |
7 | Scand = PerturbationDE(Scurrent, P) |
8 | p = BoltzmannProbability(Scand, Scurrent, T) |
9 | if g(Scand, vi, z) < g(Pi, vi, z) |
10 | Pi = Scand |
11 | if g(Scand, vi, z) < g(Scurrent, vi, z) or U(0,1) < p |
12 | Scurrent = Scand |
13 | z = ObtainReferencePoint (Scand) |
14 | j = j +1 |
15 | i = i +1 |
16 | FE = N × L |
17 | T = T × α |
18 | return P |
Algorithm 4 PerturbationDE | |
Input: Current solution Scurrent, population P | |
Output: Candidate Solution Scand | |
1 | Initialize solutions: target, mutant, sol1, sol2, sol3 |
2 | target = Scurrent |
3 | sol1 = RandomSelection(P) |
4 | sol2 = RandomSelection(P) |
5 | sol3 = RandomSelection(P) |
6 | mutant = RandOneMutation(ind1, ind2, ind3) |
7 | mutant = Repair(mutant) |
8 | Scand = BinomialCrossover (target, mutant) |
9 | return Scand |
3. Experimental Setup
4. Results
4.1. DTLZ Benchmark Analysis
4.2. CEC2009 Benchmark Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chand, S.; Wagner, M. Evolutionary Many-Objective Optimization: A Quick-Start Guide. Surv. Oper. Res. Manag. Sci. 2015, 20, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Ishibuchi, H.; Tsukamoto, N.; Nojima, Y. Evolutionary Many-Objective Optimization: A Short Review. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 2424–2431. [Google Scholar]
- Falcón-Cardona, J.G.; Coello Coello, C.A. A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell. 2017, 11, 71–100. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; García-Martinez, C.; Lozano, M. Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated Annealing: Taxonomy, Comparison, and Synergy Test. IEEE Trans. Evol. Comput. 2012, 16, 787–800. [Google Scholar] [CrossRef]
- Mashwani, W.K. Comprehensive Survey of the Hybrid Evolutionary Algorithms. Int. J. Appl. Evol. Comput. 2013, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bechikh, S.; Elarbi, M.; Ben Said, L. Many-objective optimization using evolutionary algorithms: A survey. Adapt. Learn. Optim. 2017, 20, 105–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, Z.; Ma, T. A short survey and challenges for multiobjective evolutionary algorithms based on decomposition. In Proceedings of the CITS 2019—International Conference on Computer, Information and Telecommunication Systems, Beijing, China, 28–31 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Li, H.; Landa-Silva, D. An adaptive evolutionary multi-objective approach based on simulated annealing. Evol. Comput. 2011, 19, 561–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amine, K. Multiobjective Simulated Annealing: Principles and Algorithm Variants. Adv. Oper. Res. 2019, 2019, 8134674. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Li, J.; Sun, H.; Wang, D.; Chen, X. Differential Evolution Improved with Self-Adaptive Control Parameters Based on Simulated Annealing. Swarm Evol. Comput. 2014, 19, 52–67. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2009, 13, 284–302. [Google Scholar] [CrossRef]
- Mashwani, W.K.; Salhi, A.; Yeniay, O.; Jan, M.A.; Khanum, R.A. Hybrid Adaptive Evolutionary Algorithm Based on Decomposition. Appl. Soft Comput. J. 2017, 57, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Mashwani, W.; Salhi, A.; Jan, M.; Khanum, R.; Sulaiman, M. Impact Analysis of Crossovers in a Multi-Objective Evolutionary Algorithm. Sci. Int. 2015, 27, 4943–4956. [Google Scholar]
- Liu, B.; Fernández, F.V.; Zhang, Q.; Pak, M.; Sipahi, S.; Gielen, G. An Enhanced MOEA/D-DE and Its Application to Multiobjective Analog Cell Sizing. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation CEC, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Chen, Y.P.; Zhang, Q. Enhancing MOEA/D with Guided Mutation and Priority Update for Multi-Objective Optimization. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation CEC, Trondheim, Norway, 18–21 May 2009; pp. 209–216. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation CEC, Trondheim, Norway, 18–21 May 2009; pp. 1–30. [Google Scholar]
- Chen, B.; Zeng, W.; Lin, Y.; Zhong, Q. An Enhanced Differential Evolution Based Algorithm with Simulated Annealing for Solving Multiobjective Optimization Problems. J. Appl. Math. 2014, 2014, 931630. [Google Scholar] [CrossRef] [Green Version]
- Engrand, P. Multi-objective optimization approach based on simulated annealing and its application to nuclear fuel management. In Proceedings of the 1997 ICONE International Conference on Nuclear Engineering, Nice, France, 25–29 May 1997; p. 477. [Google Scholar]
- Ulungu, E.L.; Teghem, J.; Fortemps, P.H.; Tuyttens, D. Heuristic for multi- objective combinatorial optimization problems by simulated annealing. In MCDM: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1995; pp. 229–238. [Google Scholar]
- Ulungu, E.L.; Teghem, J.; Fortemps, P.H.; Tuyttens, D. MOSA method: A tool for solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 1999, 8, 221–236. [Google Scholar] [CrossRef]
- Czyzżak, P.; Jaszkiewicz, A. Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 1998, 7, 34–47. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization; Springer: London, UK, 2005; pp. 105–145. [Google Scholar] [CrossRef] [Green Version]
Parameter | Setting |
---|---|
Maximal function evaluations (MFE) | 100,000 |
Size of the population (N) | 100 |
Chain of Markov (L) | 20 (DTLZ), 2 (CEC2009) |
Initial temperature (Ti) | 1 |
Final temperature (Tf) | 0.0000001 |
Temperature factor (α) | 0.98 |
Parameter | Setting |
---|---|
Crossover probability | 1 |
SBX distribution index | 15 |
Mutation probability | 1/number of objectives |
Mutation distribution index | 20 |
Parameter | Setting |
---|---|
Scale Factor (F) | 0.5 |
Crossover rate (Cr) | 0.8 |
Test Problem | 3 Objectives | 5 Objectives | 10 Objectives |
---|---|---|---|
DTLZ1 | 216.790132039933, 245.572126619941, 265.114937485812 | 80.8714391297344, 227.104643547038, 235.570177240396, 201.976698417331, 344.81892944792 | 4.06142015762104, 2.25156894368627, 28.0355439457454, 18.0131641679773, 48.6777918069853, 55.3772497318585, 133.939834807773, 139.713524060566, 222.454058357031, 321.944734395031 |
DTLZ2 | 2.38622940286774, 2.47201723363377, 2.6806935648516 | 2.05896735099775, 2.07725455911758, 2.30808795675219, 2.57449333535658, 2.9380095369211 | 0.6594305076443, 0.648350703222635, 0.840342066735919, 1.24805308667332, 1.54612890881046, 1.70777551383235, 1.8764060443055, 1.97914511371776, 2.29490194623458, 2.65985264422613 |
DTLZ3 | 822.509995384644, 799.103543751443, 1242.39097615921 | 689.016436482976, 547.613912205914, 500.989149866526, 827.81074606278, 1089.39809110161 | 49.243814823296, 78.5147608980575, 133.64045805898, 150.770000538526, 217.750852407648, 340.827375270017, 565.932643419409, 495.059846407958, 829.140836249926, 1271.6885408782, |
DTLZ4 | 2.58950883612183, 1.65645180809823, 2.02042410538188 | 2.66379101299125, 2.13852567972279, 2.04131611330391, 1.99090557186032, 1.98125761314518, | 2.64822143939513, 2.20030288801471, 2.2491760776445, 2.083066369613, 2.1065144928458, 2.09386422171755, 1.99635654481651, 2.24556199410806, 2.01705020385728, 2.14178980883573 |
DTLZ5 | 2.06970298570428, 2.11909090597952, 2.74503917772623 | 1.31770044511346, 1.68921445015483, 3.31646087578869, 3.41224588178889, 3.49994217680484 | 0.291869064968389, 0.49338116154924, 0.525290602300518, 0.611762301869089, 0.751594578115702, 1.10935039999348, 2.68788397225164, 3.29311486089528, 3.41214316344024, 3.49975337563819 |
DTLZ6 | 9.71802048756533, 9.50035002572186, 10.5676062054648 | 9.56330574133902, 9.59158225806973, 10.477256602242, 10.9414071660156, 10.923652672406, | 3.6503932212918, 3.29696637156103, 5.62792594695437, 7.16542587886431, 7.97964101213103, 9.77412868397095, 9.89622372940959, 10.6364664206205, 10.9073924572044, 10.9367989501483 |
DTLZ7 | 1.0, 0.999999999998507, 24.2793251715135 | 1.0, 0.999999994782373, 0.999999999986268, 0.999999999997808, 42.0189690066051, | 1.0, 0.999999999990235, 0.999999991586879, 1.0, 0.999999998676653, 1.0, 0.99999999981814, 1.0, 0.999999997160675, 21.0 |
Test Problem | 2 Objectives | 3 Objectives |
---|---|---|
UF1 | 4.056791172 3.587159682 | - |
UF2 | 2.700068047 2.02284611 | - |
UF3 | 3.643565528 4.753315586 | - |
UF4 | 1.205666356 1.221462823 | - |
UF5 | 9.178972446 10.07250673 | - |
UF6 | 12.40456172 13.75189469 | - |
UF7 | 4.169101474 3.206875182 | - |
UF8 | - | 9.214592744 10.62998938 11.46084736 |
UF9 | - | 9.853718763 12.22418277 8.259884555 |
UF10 | - | 9.853718763 12.22418277 8.259884555 |
PROBLEM | M | MOSA/D-CGO | MOSA/D-DE |
---|---|---|---|
DTLZ1 | 3 | 1.411396 × 107 (7.856170 × 101) | ↑1.411407 × 107 (2.077398 × 101) |
5 | 3.013240 × 1011 (7.546308 × 104) | ↑3.013241 × 1011 (1.109078 × 104) | |
10 | 1.667917 × 1016 (2.419205 × 1013) | ↑1.668377 × 1016 (3.215349 × 108) | |
DTLZ2 | 3 | 1.508330 × 101 (2.781792 × 10−2) | ↑1.517692 × 101 (7.637901 × 10−3) |
5 | 7.361979 × 101 (7.759884 × 10−1) | ↑7.387519 × 101 (3.847436 × 10−2) | |
10 | ↓2.600539 × 101 (4.958777 × 10−1) | 2.569999 × 101 (1.980545 × 10−1) | |
DTLZ3 | 3 | 8.163884 × 108 (6.516296 × 104) | ↑8.165865 × 108 (4.513141 × 102) |
5 | 1.689445 × 1014 (8.081423 × 1012) | ↑1.704707 × 1014 (9.718498 × 107) | |
10 | 1.699675 × 1024 (4.226203 × 1022) | ↑1.707961 × 1024 (8.685232 × 1018) | |
DTLZ4 | 3 | 7.958441 × 100 (1.283030 × 10−2) | ↑8.002655 × 100 (1.583281 × 10−2) |
5 | ↓4.522733 × 101 (3.629265 × 10−2) | 4.509505 × 101 (8.641444 × 10−2) | |
10 | ↓2.327196 × 103 (3.100255 × 100) | 2.298456 × 103 (1.139568 × 101) | |
DTLZ5 | 3 | 9.944000 × 100 (1.078512 × 10−2) | ↑9.990017 × 100 (2.501031 × 10−2) |
5 | ---7.652259 × 101 (3.121247 × 10−1) | ---7.657619 × 101 (1.983684 × 10−1) | |
10 | 3.412050 × 100 (2.043577 × 10−2) | ↑3.428953 × 100 (8.094812 × 10−3) | |
DTLZ6 | 3 | ↓9.009791 × 102 (1.712226 × 101) | 7.219506 × 102 (8.185913 × 100) |
5 | ↓1.053329 × 105 (4.977173 × 103) | 7.647568 × 104 (1.856713 × 103) | |
10 | ↓4.179011 × 108 (6.692261 × 106) | 2.876860 × 108 (9.403331 × 106) | |
DTLZ7 | 3 | 1.536594 × 101 (6.362204 × 10−1) | ↑1.699378 × 101 (2.933636 × 10−1) |
5 | ---2.219751 × 101 (1.606481 × 100) | ---2.263389 × 101 (9.949435 × 10−1) | |
10 | 0.000000 × 100 (0.000000 × 100) | ↑5.649215 × 10−6 (1.130646 × 10−5) |
Problem | M | MOSA/D_CGO | MOSA/D-DE |
---|---|---|---|
UF1 | 2 | 1.207938 × 101 (3.053312 × 10−1) | ↑1.359271 × 101 (8.924848 × 10−2) |
UF2 | 2 | 4.420144 × 100 (1.124631 × 10−1) | ↑4.898329 × 100 (4.114705 × 10−2) |
UF3 | 2 | 1.272886 × 101 (2.770899 × 10−1) | ↑1.446032 × 101 (1.560741 × 10−1) |
UF4 | 2 | 6.199354 × 10−1 (7.645704 × 10−3) | ↑6.226053 × 10−1 (4.375474 × 10−3) |
UF5 | 2 | 5.794553 × 101 (2.163053 × 100) | ↑7.537953 × 101 (9.461970 × 10−1) |
UF6 | 2 | 1.449117 × 102 (2.789804 × 100) | ↑1.558762 × 102 (9.956338 × 10−1) |
UF7 | 2 | 1.023408 × 101 (3.651312 × 10−1) | ↑1.159760 × 101 (2.062088 × 10−1) |
UF8 | 3 | 1.021735 × 103 (2.236911 × 101) | ↑1.112894 × 103 (4.871298 × 10−1) |
UF9 | 3 | 8.871173 × 102 (1.462057 × 101) | ↑9.214801 × 102 (8.179234 × 100) |
UF10 | 3 | 2.676289 × 102 (5.962540 × 101) | ↑8.332120 × 102 (1.796126 × 101) |
Problem | M | MOSA/D_CGO | MOSA/D-DE |
---|---|---|---|
DTLZ1 | 3 | 1.698462 × 100 (5.231658 × 10−1) | ↑2.567411 × 10−2 (3.988398 × 10−4) |
5 | 1.848446 × 100 (7.371114 × 10−1) | ↑1.362515 × 10−1 (8.662087 × 10−3) | |
10 | 2.605653 × 100 (8.858904 × 10−1) | ↑2.746888 × 10−1 (2.055289 × 10−2) | |
DTLZ2 | 3 | 1.338869 × 10−1 (1.050833 × 10−2) | ↑6.539183 × 10−2 (8.887102 × 10−4) |
5 | ↓3.879495 × 10−1 (2.383225 × 10−2) | 4.315983 × 10−1 (1.731880 × 10−2) | |
10 | ↓8.086104 × 10−1 (3.491915 × 10−2) | 8.740702 × 10−1 (3.886488 × 10−2) | |
DTLZ3 | 3 | 3.943222 × 101 (1.066523 × 101) | ↑8.927530 × 10−2 (8.582940 × 10−3) |
5 | 3.527925 × 101 (1.256126 × 101) | ↑2.402407 × 100 (1.052387 × 100) | |
10 | 3.857988 × 101 (8.728455 × 100) | ↑1.452693 × 101 (3.864857 × 100) | |
DTLZ4 | 3 | 2.193973 × 10−1 (2.708875 × 10−2) | ↑7.370770 × 10−2 (2.095534E × 10−3) |
5 | 4.264948 × 10−1 (2.618424 × 10−2) | ↑3.453491 × 10−1 (1.259533 × 10−2) | |
10 | ---7.485737 × 10−1 (2.873640 × 10−2) | ---7.565568 × 10−1 (2.740685 × 10−2) | |
DTLZ5 | 3 | 3.692489 × 10−2 (4.482185 × 10−3) | ↑8.796775 × 10−3 (4.662547 × 10−4) |
5 | ↓2.173594 × 10−1 (2.151767 × 10−2) | 3.198228 × 10−1 (3.323426 × 10−3) | |
10 | ↓8.274774 × 10−1 (3.498018 × 10−2) | 9.278413 × 10−1 (8.544034 × 10−3) | |
DTLZ6 | 3 | ↓2.360560 × 100 (4.875849 × 10−1) | 5.755759 × 100 (1.295398 × 10−1) |
5 | ↓3.233184 × 100 (5.565340 × 10−1) | 7.249152 × 100 (1.815938 × 10−1) | |
10 | ↓4.311238 × 100 (3.579400 × 10−1) | 7.249090 × 100 (1.507697 × 10−1) | |
DTLZ7 | 3 | 2.640245 × 100 (5.499560 × 10−1) | ↑6.763103 × 10−1 (4.596304 × 10−2) |
5 | 5.536790 × 100 (6.953019 × 10−1) | ↑1.562072 × 100 (2.362084 × 10−1) | |
10 | 5.536790 × 100 (6.953019 × 10−1) | ↑1.562072 × 100 (2.362084 × 10−1) |
Problem | M | MOSA/D_CGO | MOSA/D-DE |
---|---|---|---|
UF1 | 2 | 3.118639 × 10−1 (3.337199 × 10−2) | ↑1.245048 × 10−1 (6.952854 × 10−3) |
UF2 | 2 | 1.632088 × 10−1 (1.376776 × 10−2) | ↑4.207095 × 10−2 (4.246406 × 10−3) |
UF3 | 2 | 5.070647 × 10−1 (3.574368 × 10−2) | ↑3.410425 × 10−1 (1.406431 × 10−2) |
UF4 | 2 | ↓8.882224 × 10−2 (3.714504 × 10−3) | 9.322984 × 10−2 (2.313839 × 10−3) |
UF5 | 2 | 2.573650 × 100 (3.112357 × 10−1) | ↑1.614455 × 100 (1.012664 × 10−1) |
UF6 | 2 | 1.323509 × 100 (1.554659 × 10−1) | ↑7.905724 × 10−1 (4.148593 × 10−2) |
UF7 | 2 | 4.111049 × 10−1 (4.643987 × 10−2) | ↑1.801766 × 10−1 (2.685634 × 10−2) |
UF8 | 3 | 8.631345 × 10−1 (1.315110 × 10−1) | ↑2.057906 × 10−1 (1.069731 × 10−2) |
UF9 | 3 | 8.061542 × 10−1 (1.206518 × 10−1) | ↑2.987048 × 10−1 (1.581723 × 10−2) |
UF10 | 3 | 6.233193 × 100 (9.715169 × 10−1) | ↑1.485037 × 100 (1.454003 × 10−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Martínez, M.; Rangel-Valdez, N.; Fernández, E.; Gómez-Santillán, C.; Morales-Rodríguez, M.L. Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition. Math. Comput. Appl. 2023, 28, 38. https://doi.org/10.3390/mca28020038
Vargas-Martínez M, Rangel-Valdez N, Fernández E, Gómez-Santillán C, Morales-Rodríguez ML. Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition. Mathematical and Computational Applications. 2023; 28(2):38. https://doi.org/10.3390/mca28020038
Chicago/Turabian StyleVargas-Martínez, Manuel, Nelson Rangel-Valdez, Eduardo Fernández, Claudia Gómez-Santillán, and María Lucila Morales-Rodríguez. 2023. "Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition" Mathematical and Computational Applications 28, no. 2: 38. https://doi.org/10.3390/mca28020038
APA StyleVargas-Martínez, M., Rangel-Valdez, N., Fernández, E., Gómez-Santillán, C., & Morales-Rodríguez, M. L. (2023). Performance Analysis of Multi-Objective Simulated Annealing Based on Decomposition. Mathematical and Computational Applications, 28(2), 38. https://doi.org/10.3390/mca28020038