High Level Bacterial Contamination of Secondary School Students’ Mobile Phones
Abstract
Introduction
Methods
Results and discussion
Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ustun, C.; Cihangiroglu, M. Health care workers’ mobile phones: A potential cause of microbial cross-contamination between hospitals and community. J Occup Environ Hyg 2012, 9, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Ibfelt, T.; Foged, C.; Andersen, L.P. Validation of dipslides as a tool for environmental sampling in a real-life hospital setting. Eur J Clin Microbiol Infect Dis 2014, 33, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Gloor, G.B.; Hummelen, R.; Macklaim, J.M.; et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 2010, 5, e15406. [Google Scholar] [CrossRef]
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004, 70, 3575–3581. [Google Scholar] [CrossRef]
- Chetta, M.; Bafunno, V.; Grillo, R.; et al. SYBR green real time-polymerase chain reaction as a rapid and alternative assay for the efficient identification of all existing Escherichia coli biotypes approved directly in wastewater samples. Biotechnol Prog 2012, 28, 1106–1113. [Google Scholar] [CrossRef]
- Peak, N.; Knapp, C.W.; Yang, R.K.; et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 2007, 9, 143–151. [Google Scholar] [CrossRef]
- Knapp, C.W.; Zhang, W.; Sturm, B.S.; Graham, D.W. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. Environ Pollut 2010, 158, 1506–1512. [Google Scholar] [CrossRef]
- Heuer, H.; Smalla, K. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 2007, 9, 657–666. [Google Scholar] [CrossRef]
- Borjesson, S.; Dienues, O.; Jarnheimer, P.A.; Olsen, B.; Matussek, A.; Lindgren, P.E. Quantification of genes encoding resistance to aminoglycosides, beta-lactams and tetracyclines in wastewater environments by real-time PCR. Int J Environ Health Res 2009, 19, 219–230. [Google Scholar] [CrossRef]
- Bhoonderowa, A.; Gookool, S.; Biranjia-Hurdoyal, S.D. The importance of mobile phones in the possible transmission of bacterial infections in the community. J Community Health 2014, 39, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Ulger, F.; Esen, S.; Dilek, A.; Yanik, K.; Gunaydin, M.; Leblebicioglu, H. Are we aware how contaminated our mobile phones with nosocomial pathogens? Ann Clin Microbiol Antimicrob 2009, 8, 7. [Google Scholar]
- Lee, Y.J.; Yoo, C.G.; Lee, C.T.; et al. Contamination rates between smart cell phones and non-smart cell phones of healthcare workers. J Hosp Med 2013, 8, 144–147. [Google Scholar] [CrossRef]
- Egert, M.; Späth, K.; Weik, K.; et al. Bacteria on smartphone touchscreens in a German university setting and evaluation of two popular cleaning methods using commercially available cleaning products. Folia Microbiol 2015, 60, 159–164. [Google Scholar] [CrossRef]
- Meadow, J.F.; Altrichter, A.E.; Green, J.L. Mobile phones carry the personal microbiome of their owners. PeerJ 2014, 2, e447. [Google Scholar] [CrossRef] [PubMed]
- Macias, J.H.; Alvarez, M.F.; Arreguin, V.; Muñoz, J.M.; Macias, A.E.; Alvarez, J.A. Chlorhexidine avoids skin bacteria recolonization more than triclosan. Am J Infect Control 2016, 44, 1530–1534. [Google Scholar] [CrossRef]
- Hanna, E.M.; Hamp, T.J.; McKillop, I.H.; et al. Comparison of culture and molecular techniques for microbial community characterization in infected necrotizing pancreatitis. J Surg Res 2014, 191, 362–369. [Google Scholar] [CrossRef]
- Griffith, J.F.; Weisberg, S.B.; Arnold, B.F.; Cao, Y.; Schiff, K.C.; Colford, J.M., Jr. Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches. Water Res 2016, 94, 371–381. [Google Scholar] [CrossRef]
- Patra, V.; Byrne, S.N.; Wolf, P. The skin microbiome: Is it affected by UV-induced immune suppression? Front Microbiol 2016, 7, 1235. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.R.; Pickering, A.J.; Leckie, J.O.; Boehm, A.B. Enterococcus spp on fomites and hands indicate increased risk of respiratory illness in child care centers. Am J Infect Control 2013, 41, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Maritz, J.M.; Sullivan, S.A.; Prill, R.J.; Aksoy, E.; Scheid, P.; Carlton, J.M. Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City. PLoS ONE 2017, 12, e0175527. [Google Scholar] [CrossRef]
- Mändar, K.; Sõber, T.; Kõljalg, S.; Rööp, T.; Mändar, R.; Sepp, E. Microbiological contamination of the euro currency in Estonia. Infect Dis 2016, 48, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Vinod Kumar, B.; Hobani, Y.H.; Abdulhaq, A.; et al. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients. Libyan J Med 2014, 9, 25451. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhang, X.X.; Zhao, F.; et al. High levels of antibiotic resistance genes and their correlations with bacterial community and mobile genetic elements in pharmaceutical wastewater treatment bioreactors. PLoS ONE 2016, 11, e0156854. [Google Scholar] [CrossRef]
- Ma, Y.; Wilson, C.A.; Novak, J.T.; et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. Environ Sci Technol 2011, 45, 7855–7861. [Google Scholar] [CrossRef] [PubMed]

| Dominating bacteria | No and % of phones contaminated with bacteria | ||||
| Group 1 (15 phones) | Group 2 (12 phones) | ||||
| n | % | n | % | p | |
| Coagulase-negative staphylococci | 12 | 80 | 8 | 67 | 0.432 |
| Micrococcus luteus | 11 | 73 | 4 | 33 | 0.038 |
| Acinetobacter lwoffii | 6 | 40 | 3 | 25 | 0.411 |
| Kocuria spp. | 3 | 20 | 2 | 17 | 0.825 |
| Bacillus spp. | 1 | 7 | 3 | 25 | 0.183 |
| Corynebacterium spp. | 1 | 7 | 3 | 25 | 0.183 |
| Paenibacillus lactis | 1 | 7 | 1 | 8 | 0.869 |
| Bacillus cereus | 1 | 7 | 1 | 8 | 0.869 |
| Staphylococcus aureus | 1 | 7 | 0 | 0 | 0.362 |
| Pseudomonas luteola | 1 | 7 | 0 | 0 | 0.362 |
| Neisseria flavescens | 1 | 7 | 0 | 0 | 0.362 |
| Rothia dentocariosa | 0 | 0 | 1 | 8 | 0.255 |
© GERMS 2017.
Share and Cite
Kõljalg, S.; Mändar, R.; Sõber, T.; Rööp, T.; Mändar, R. High Level Bacterial Contamination of Secondary School Students’ Mobile Phones. GERMS 2017, 7, 73-77. https://doi.org/10.18683/germs.2017.1111
Kõljalg S, Mändar R, Sõber T, Rööp T, Mändar R. High Level Bacterial Contamination of Secondary School Students’ Mobile Phones. GERMS. 2017; 7(2):73-77. https://doi.org/10.18683/germs.2017.1111
Chicago/Turabian StyleKõljalg, Siiri, Rando Mändar, Tiina Sõber, Tiiu Rööp, and Reet Mändar. 2017. "High Level Bacterial Contamination of Secondary School Students’ Mobile Phones" GERMS 7, no. 2: 73-77. https://doi.org/10.18683/germs.2017.1111
APA StyleKõljalg, S., Mändar, R., Sõber, T., Rööp, T., & Mändar, R. (2017). High Level Bacterial Contamination of Secondary School Students’ Mobile Phones. GERMS, 7(2), 73-77. https://doi.org/10.18683/germs.2017.1111
