Recent Advances in the Diagnosis of Mycobacterium tuberculosis
Abstract
Introduction
Available techniques for the detection of Mycobacterium species
Septi-chek AFB
Microcolony detection on solid media
Microscopic observation broth-drug susceptibility assay (MODS)
BACTEC 460TB
ESP blood culture system
ESP Culture System II for growth and detection of mycobacteria
MB/BacT
Identification of mycobacterial species
Chromatography
TB PNA FISH
Nucleic acid amplification (NAA)
Xpert MTB/RIF
PCR
Transcription mediated amplification (TMA). AMPLIFIED MTD (Mycobacterium Tuberculosis Direct) Test
Ligase chain reaction (LCR)
Genotyping methods
Spoligotyping
DNA fingerprinting
Mycobacterial interspersed repetitive unit typing
Antigen and antibody tests
Serology
ELISA
Antigen detection
Detection of lipoarabinomannan
Multi-antigen and antibody assays (SEVA TB ELISA)
Cytokine detection assays. Interferon-gamma release assays (IGRAs)
QuantiFERON-TB Gold
QuantiFERON-TB Gold In-Tube
T-SPOT.TB
Monokine-amplified IFN-gamma release assays (MIGRAs)
Other diagnostic approaches
Detection of anti-mycobacterial superoxide dismutase antibodies.
MPB 64 patch test
FAST Plaque TB
FAST Plaque-Response
ADA
Conclusion
Author Contributions
Conflicts of Interest
References
- Siddiqi, K.; Lambert, M.L.; Walley, J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect Dis. 2003, 3, 288–296. [Google Scholar] [CrossRef]
- ISTC Tuberculosis Coalition for Technical Assistance. International Standards for Tuberculosis Care, 2006. The Hague. 2006. Available online: http://www.who.int/tb/publications/2006/istc_report.pdf (accessed on 20 June 2012).
- TB Partnership Strategic Plan for new diagnostics working group. 2006-2015. Available online: http://www.stoptb.org/wg/ new_diagnostics/assets/documents/Draft%20NDWG%20Strategic%20Plan%20for%20Cape%20Town%20Meeting.pdf (accessed on 20 June 2012).
- WHO Expert Consultation Group (2005). Improving the diagnosis of tuberculosis through the optimization of sputum microscopy. Geneva, World Health Organization. Available online: http://www.find diagnostics.org/export/sites/default/programs/tb/documents/expert_consultation_sep05.pdf (accessed on 18 June 2012).
- Stop TB Partnership (2004). Progress report on the global plan to stop tuberculosis. WHO, Geneva. (WHO/HTM/STB/2004.29).
- Stop TB Partnership (2005). Second Global plan to stop TB (2006-2015) Geneva, World Health Organization. Available online: http://www.stoptb.org/gpstb/ gpstb00-05.asp (accessed on 3 June 2012).
- Xue, Y.; Bai, Y.; Gao, X. Expression, purification and characterization of Mycobacterium tuberculosis RpfE protein. J Biomed Res. 2012, 26, 17–23. [Google Scholar] [CrossRef]
- Baths, V.; Roy, U. Mycobacterium tuberculosis using statistical coupling analysis of the esterase family proteins. J Biomed Res. 2011, 25, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, K.; Sharma, M. An approach to the detection of mycobacteria in clinically suspected cases of urinary tract infection in immunocompromised patients. WebmedCentral BACTERIOLOGY. 2010, 9, WMC00616. [Google Scholar]
- Laboratory Procedure. BBL SEPTI-CHEK AFB. Mycobacteria Culture System. Available online: http://www.bd.com/ds/ technicalCenter/clsi/clsi-sepchekAFB.pdf (accessed on 10 June 2012).
- Ramachandran, R.; Paramasivan, C. What is new in the diagnosis of tuberculosis? Part 1: Techniques for diagnosis of tuberculosis. Ind J Tub. 2003, 133–141. [Google Scholar]
- Isenberg, H.D.; D'Amato, R.F.; Heifets, L.; Murray, P.R.; Scardamaglia, M.; Jacobs, M.C.; et al. Collaborative feasibility study of a biphasic system (Roche Septi-Chek AFB) for rapid detection and isolation of mycobacteria. J Clin Microbiol. 1991, 29, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.; Hasan, R.; Kanji, A.; Hassan, Q.; Azam, I. Evaluation of a microcolony detection method and phage assay for rapid detection of Mycobacterium tuberculosis in sputum samples. Southeast Asian J Trop Med Public Health. 2006, 37, 1187–1195. [Google Scholar]
- Caviedes, L.; Lee, T.S.; Gilman, R.H.; Sheen, P.; Spellman, E.; Lee, E.H.; et al. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. The Tuberculosis Working Group in Peru. J Clin Microbiol. 2000, 38, 1203–1208. [Google Scholar] [CrossRef]
- Scarparo, C.; Ricordi, P.; Ruggiero, G.; Piccoli, P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. J Clin Microbiol. 2004, 42, 1109–1114. [Google Scholar] [CrossRef]
- Venkataraman, P.; Herbert, D.; Paramasivan, C.N. Evaluation of the BACTEC radiometric method in the early diagnosis of tuberculosis. Indian J Med Res. 1998, 108, 120–127. [Google Scholar]
- Seth, V.; Kabra, S. Essentials of Tuberculosis in Children; Jaypee Brothers Medical Publishers: New Delhi, India, 2006. [Google Scholar]
- Morello, J.A.; Leitch, C.; Nitz, S.; Dyke, J.W.; Andruszewski, M.; Maier, G.; et al. Detection of bacteremia by Difco ESP blood culture system. J Clin Microbiol. 1994, 32, 811–818. [Google Scholar] [CrossRef]
- Woods, G.L.; Fish, G.; Plaunt, M.; Murphy, T. Clinical evaluation of difco ESP culture system II for growth and detection of mycobacteria. J Clin Microbiol. 1997, 35, 121–124. [Google Scholar]
- Rohner, P.; Ninet, B.; Metral, C.; Emler, S.; Auckenthaler, R. Evaluation of the MB/BacT system and comparison to the BACTEC 460 system and solid media for isolation of mycobacteria from clinical specimens. J Clin Microbiol. 1997, 35, 3127–3131. [Google Scholar]
- Concepcion, F.; Ang, R.; Myrna, T.; Mendoza, M.; Bulatao, W.; Cajucom, M. Culture isolation of mycobacteria by MB/BacT system compared to Lowenstein Jensen egg medium culture method. The Philippine Journal of Microbiology and Infectious Diseases. 2001, 30. [Google Scholar]
- Ogbaini-Emovon, E. Current trends in the laboratory diagnosis of tuberculosis. Benin Journal of Postgraduate Medicine. 2009, 11, 79–90. [Google Scholar]
- Stender, H.; Lund, K.; Petersen, K.H.; Rasmussen, O.F.; Hongmanee, P.; Miorner, H.; et al. Fluorescence In situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol. 1999, 37, 2760–2765. [Google Scholar] [PubMed]
- WHO Diagnostics for Tuberculosis: Global Demand and Market Potential. Special Programme for Research and Training in Tropical Diseases (TDR); 2006.
- EDMA Tuberculosis Fact Sheet. In Vitro Diagnostics. Making a real difference in health & life quality. European Diagnostic Manufacturers Association. 2007. Available online: http://www.vdgh.de/media/file/ 201.6_anlage-1f-tuberculosis-fact-sheet-jul07.pdf (accessed on 22 May 2012).
- Catanzaro, A.; Perry, S.; Clarridge, J.E.; Dunbar, S.; Goodnight-White, S.; LoBue, P.A.; et al. The role of clinical suspicion in evaluating a new diagnostic test for active tuberculosis: results of a multicenter prospective trial. JAMA. 2000, 283, 639–645. [Google Scholar] [PubMed]
- Clarridge, J.E.; 3rd Shawar, R.M.; Shinnick, T.M.; Plikaytis, B.B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993, 31, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Abe, C.; Hirano, K.; Wada, M.; Kazumi, Y.; Takahashi, M.; Fukasawa, Y.; et al. Detection of Mycobacterium tuberculosis in clinical specimens by polymerase chain reaction and Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test. J Clin Microbiol. 1993, 31, 3270–3274. [Google Scholar] [CrossRef]
- Roggenkamp, A.; Hornef, M.W.; Masch, A.; Aigner, B.; Autenrieth, I.B.; Heesemann, J. Comparison of MB/BacT and BACTEC 460 TB systems for recovery of mycobacteria in a routine diagnostic laboratory. J Clin Microbiol. 1999, 37, 3711–3712. [Google Scholar] [CrossRef]
- Kambashi, B.; Mbulo, G.; McNerney, R.; Tembwe, R.; Kambashi, A.; Tihon, V.; et al. Utility of nucleic acid amplification techniques for the diagnosis of pulmonary tuberculosis in sub-Saharan Africa. Int J Tuberc Lung Dis. 2001, 5, 364–369. [Google Scholar]
- Bradley, S.P.; Reed, S.L.; Catanzaro, A. Clinical efficacy of the amplified Mycobacterium tuberculosis direct test for the diagnosis of pulmonary tuberculosis. Am J Respir Crit Care Med. 1996, 153, 1606–1610. [Google Scholar] [CrossRef]
- Pai, M.; Flores, L.L.; Hubbard, A.; Riley, L.W.; Colford, J.M., Jr. Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis. BMC Infect Dis. 2004, 4, 6. [Google Scholar] [CrossRef]
- Pai M, Flores LL, Pai N, Hubbard A, Riley LW, Colford JM, Jr. Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2003, 3, 633–643. [Google Scholar] [CrossRef]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, M.A.; Paul, S.K.; Mahmud, C.; Khan, E.R.; Rahman, M.M.; et al. Evaluation of PCR with culture for the diagnosis of pulmonary tuberculosis. Mymensingh Med J. 2012, 21, 399–403. [Google Scholar]
- AMPLIFIED MTD Test. Gen-Probe, Hologic. 2012. Available online: http://www.gen-probe.com/products-services/ amplified-mtd (accessed on 2 June 2012).
- Wiedmann, M.; Wilson, W.J.; Czajka, J.; Luo, J.; Barany, F.; Batt, C.A. Ligase chain reaction (LCR)--overview and applications. PCR Methods Appl. 1994, 3, S51–64. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W. TB: keeping an ancient killer at bay. MLO Med Lab Obs. 2004, 36, 8–10. [Google Scholar] [PubMed]
- Gori, A.; Bandera, A.; Marchetti, G.; et al. Spoligotyping and Mycobacterium tuberculosis. Emerging Infectious Diseases. 2005, 11, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Bifani, P.; Kurepina, N.; Mathema, B.; Wang, X.M.; Kreiswirth, B. Genotyping of Mycobacterium tuberculosis clinical isolates using IS6110-based restriction fragment length polymorphism analysis. Methods Mol Biol. 2009, 551, 173–188. [Google Scholar]
- Supply, P.; Mazars, E.; Lesjean, S.; et al. Variable human mini-satellite regions in M tuberculosis genome. Mol Microbial. 2000, 36, 762–771. [Google Scholar] [CrossRef]
- Cave, M.D.; Eisenach, K.D.; Templeton, G.; Salfinger, M.; Mazurek, G.; Bates, J.H.; et al. Stability of DNA fingerprint pattern produced with IS6110 in strains of Mycobacterium tuberculosis. J Clin Microbiol. 1994, 32, 262–266. [Google Scholar] [CrossRef]
- Cave, M.D.; Eisenach, K.D.; McDermott, P.F.; Bates, J.H.; Crawford, J.T. IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes. 1991, 5, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Albert, H.; Heydenrych, A.; Brookes, R.; Mole, R.J.; Harley, B.; Subotsky, E.; et al. Performance of a rapid phage-based test, FASTPlaqueTB, to diagnose pulmonary tuberculosis from sputum specimens in South Africa. Int J Tuberc Lung Dis. 2002, 6, 529–537. [Google Scholar] [CrossRef]
- Kashyap, R.S.; Rajan, A.N.; Ramteke, S.S.; Agrawal, V.S.; Kelkar, S.S.; Purohit, H.J.; et al. Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of Antigen 85 complex: a prospective cohort study. BMC Infect Dis. 2007, 7, 74. [Google Scholar] [CrossRef]
- Harinath, B.C.; Kumar, S.; Roy, S.S.; Hirudkar, S.; Upadhye, V.; Shende, N. A cocktail of affinity-purified antibodies reactive with diagnostically useful mycobacterial antigens ES-31, ES-43, and EST-6 for detecting the presence of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2006, 55, 65–68. [Google Scholar] [CrossRef]
- Venkatesh, K.; Parija, S.C.; Mahadevan, S.; Negi, V.S. Reverse passive haemagglutination (RPHA) test for detection of mycobacterial antigen in the cerebrospinal fluid for diagnosis of tubercular meningitis. Indian J Tuberc. 2007, 54, 41–48. [Google Scholar]
- Wood, R.; Racow, K.; Bekker, L.G.; Middelkoop, K.; Vogt, M.; Kreiswirth, B.N.; et al. Lipoarabinomannan in urine during tuberculosis treatment: association with host and pathogen factors and mycobacteriuria. BMC Infect Dis. 2012, 12, 47. [Google Scholar] [CrossRef]
- Lawn, S.D. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis. 2012, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Hamasur, B.; Bruchfeld, J.; Haile, M.; Pawlowski, A.; Bjorvatn, B.; Kallenius, G.; et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Methods. 2001, 45, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Alavi-Naini, R.; Metanat, M.; Alijani, E.; Mozaffar, H. Patho-TB test for the rapid diagnosis of pulmonary tuberculosis. J Res Med Sci. 2009, 14, 301–307. [Google Scholar] [PubMed]
- Wankhade, G.; Majumdar, A.; Kamble, P.D.; De, S.; Harinath, B.C. Multi-antigen and antibody assays (SEVA TB ELISA) for the diagnosis of tuberculous pleural effusion. Indian J Tuberc. 2012, 59, 78–82. [Google Scholar] [PubMed]
- Mazurek, G.H.; Jereb, J.; Vernon, A.; LoBue, P.; Goldberg, S.; Castro, K. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection - United States, 2010. MMWR Recomm Rep. 2010, 59, 1–25. [Google Scholar] [PubMed]
- Aramă, V.; Tilişcan, C.; Ion, D.; Mihăilescu, R.; Munteanu, D.; Streinu-Cercel, A.; et al. Serum adipokines and HIV viral replication in patients undergoing antiretroviral therapy. GERMS. 2012, 2, 12–17. [Google Scholar] [CrossRef]
- Guaraldi, G. Evolving approaches and resources for clinical practice in the management of HIV infection in the HAART era. GERMS. 2011, 1. [Google Scholar] [CrossRef]
- Ramos, J.M.; Robledano, C.; Masia, M.; Belda, S.; Padilla, S.; Rodriguez, J.C.; et al. Contribution of Interferon gamma release assays testing to the diagnosis of latent tuberculosis infection in HIV-infected patients: A comparison of QuantiFERON-TB gold in tube, T-SPOT.TB and tuberculin skin test. BMC Infect Dis. 2012, 12, 169. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Cao, Z.; Yang, B.; Zhang, J.; Cheng, X. Diagnostic performance of multiplex cytokine and chemokine assay for tuberculosis. Tuberculosis (Edinb). 2012. [Google Scholar] [CrossRef]
- Kasprowicz, V.O.; Halliday, J.S.; Mitchell, J.; Klenerman, P. MIGRAs: are they the new IGRAs? Development of monokine-amplified IFN-gamma release assays. Biomark Med. 2012, 6, 177–186. [Google Scholar] [CrossRef]
- Shivannavar, C.T.; Katoch, V.M.; Sharma, V.D.; Patil, M.A.; Katoch, K.; Bharadwaj, V.P.; et al. Determination of mycobacterial phylogeny on the basis of immunological relatedness of superoxide dismutases. Int J Syst Bacteriol. 1996, 46, 1164–1169. [Google Scholar] [CrossRef]
- Nakamura, R.M.; Einck, L.; Velmonte, M.A.; Kawajiri, K.; Ang, C.F.; Delasllagas, C.E.; et al. Detection of active tuberculosis by an MPB-64 transdermal patch: a field study. Scand J Infect Dis. 2001, 33, 405–407. [Google Scholar]
- Biomedical, C. Cosmos Biomedical's Range of Products and Reagents for Bacteriology. FastPlaqueTB and FastPlaque-Response Diagnostic AssaysAvailable online:. Available online: http://www.cosmosbiomedical.com/ bacti/kitsandsens/fastplaquetb.shtml (accessed on 3 June 2012).
- Mathur, P.; Tiwari, K.; Trikha, S.; Tiwari, D. Diagnostic value of adenosine deaminase (ADA) activity in tubercular serositis. Indian J Tuberc. 2006, 53, 92–95. [Google Scholar]
- WHO Meeting of Partners for Tuberculosis Control in the South-East Asia Region (SEAR). SEA-TB-297. 2006. Available online: http://www.searo.who.int/LinkFiles/ Publications_TB-Control_SEAR.pdf (accessed on 1 July 2012).
- Streinu-Cercel, O.; Streinu-Cercel, A.; Preoţescu, L.; Streinu-Cercel, A. Entecavir as specific antiviral therapy in selected cases of severe acute hepatitis B. GERMS. 2012, 2, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.S. Human immunodeficiency virus and cancer: A population of HIV-infected patients at Hospital de Santa Maria and predictors of cancer. GERMS. 2012, 2, 60–74. [Google Scholar] [CrossRef] [PubMed]
© GERMS 2012.
Share and Cite
Anochie, P.I.; Onyeneke, E.C.; Ogu, A.C.; Onyeozirila, A.C.; Aluru, S.; Onyejepu, N.; Zhang, J.; Efere, L.; A Adetunji, M.; Sánchez, J.G.B. Recent Advances in the Diagnosis of Mycobacterium tuberculosis. GERMS 2012, 2, 110-120. https://doi.org/10.11599/germs.2012.1021
Anochie PI, Onyeneke EC, Ogu AC, Onyeozirila AC, Aluru S, Onyejepu N, Zhang J, Efere L, A Adetunji M, Sánchez JGB. Recent Advances in the Diagnosis of Mycobacterium tuberculosis. GERMS. 2012; 2(3):110-120. https://doi.org/10.11599/germs.2012.1021
Chicago/Turabian StyleAnochie, Philip Ifesinachi, Edwina C Onyeneke, Angelina C Ogu, Anthony C Onyeozirila, Srikanth Aluru, Nneka Onyejepu, Jian Zhang, Lauretta Efere, Mariam A Adetunji, and Juan Gabriel Bueno Sánchez. 2012. "Recent Advances in the Diagnosis of Mycobacterium tuberculosis" GERMS 2, no. 3: 110-120. https://doi.org/10.11599/germs.2012.1021
APA StyleAnochie, P. I., Onyeneke, E. C., Ogu, A. C., Onyeozirila, A. C., Aluru, S., Onyejepu, N., Zhang, J., Efere, L., A Adetunji, M., & Sánchez, J. G. B. (2012). Recent Advances in the Diagnosis of Mycobacterium tuberculosis. GERMS, 2(3), 110-120. https://doi.org/10.11599/germs.2012.1021
