The Presence of Exotoxin Genes and Biofilm Production in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates
Abstract
Introduction
Methods
Study design, study participants, and ethical approval
Sample size calculation and clinical specimens
Bacterial isolation and identification
Molecular identification of P. aeruginosa isolates by PCR
Antibiotic sensitivity tests
Biofilm assay
Molecular detection of exotoxin genes in P. aeruginosa isolates by conventional PCR
Statistical analysis
Results
Patient characteristics, clinical specimens, and isolation of P. aeruginosa
Antibiotic sensitivity tests and biofilm formation
Molecular detection of exotoxin genes in P. aeruginosa clinical isolates
Discussion
Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azimi, S.; Kafil, H.S.; Baghi, H.B.; et al. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg Infect Control. 2016, 11, Doc04. [Google Scholar] [CrossRef]
- Ali, F.A.; Bakir, S.H.; Haji, S.H.; Hussen, B.M. Evaluation of blaGES-5 and blaVEB-1 genes with multidrug-resistant extend, pandrug resistance patterns (MDR, XDR, PDR), and biofilm formation in Pseudomonas aeruginosa isolates. Cell Mol Biol. 2021, 67, 52–60. [Google Scholar] [CrossRef]
- Zarei, O.; Shokoohizadeh, L.; Hossainpour, H.; Alikhani, M.Y. Molecular analysis of Pseudomonas aeruginosa isolated from clinical, environmental and cockroach sources by ERIC-PCR. BMC Res Notes. 2018, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Spilker, T.; Coenye, T.; Vandamme, P.; LiPuma, J.J. PCR-based assay for differentiation of Pseudomonas aeruginosa from otherPseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004, 42, 2074–79. [Google Scholar] [CrossRef] [PubMed]
- Akrami, S.; Ekrami, A.; Avarvand, A.Y. Biofilm generation and antibiotic resistant profile of extensive and multidrug resistant Pseudomonas aeruginosa from burn patients in Ahvaz: a cross-sectional study. Health Sci Rep. 2024, 7, e2138. [Google Scholar] [CrossRef] [PubMed]
- Fakhkhari, P.; Tajeddin, E.; Azimirad, M.; et al. Involvement of Pseudomonas aeruginosa in the occurrence of community and hospital acquired diarrhea, and its virulence diversity among the stool and the environmental samples. Int J Environ Health Res. 2022, 32, 61–71. [Google Scholar] [CrossRef]
- Horna, G.; Amaro, C.; Palacios, A.; Guerra, H.; Ruiz, J. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep. 2019, 9, 10874. [Google Scholar] [CrossRef] [PubMed]
- Gad, G.F.; El-Domany, R.A.; Zaki, S.; Ashour, H.M. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother. 2007, 60, 1010–17. [Google Scholar] [CrossRef]
- Parmar, H.; Dholakia, A.; Vasavada, D.; Singhala, H. The current status of antibiotic sensitivity of Pseudomonas aeruginosa isolated from various clinical samples. Int J Res Med. 2013, 2, 1–6. [Google Scholar]
- Anjum, F.; Mir, A. Susceptibility pattern of Pseudomonas aeruginosa against various antibiotics. Afr J Microbiol Res. 2010, 4, 1005–12. [Google Scholar]
- Anil, C.; Shahid, R.M. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa clinical isolates at a tertiary care hospital in Kathmandu, Nepal. Asian J Pharm Clin Res. 2013, 6, 235–38. [Google Scholar]
- Herrera, S.; Bodro, M.; Soriano, A. Predictors of multidrug resistant Pseudomonas aeruginosa involvement in bloodstream infections. Curr Opin Infect Dis. 2021, 34, 686–92. [Google Scholar] [CrossRef]
- Tang, P.C.; Lee, C.C.; Li, C.W.; Li, M.C.; Ko, W.C.; Lee, N.Y. Time-to-positivity of blood culture: an independent prognostic factor of monomicrobial Pseudomonas aeruginosa bacteremia. J Microbiol Immunol Infect. 2017, 50, 486–93. [Google Scholar] [CrossRef]
- van Delden, C. Pseudomonas aeruginosa bloodstream infections: how should we treat them? Int J Antimicrob Agents 2007, 30 (Suppl. 1), S71–S75. [Google Scholar] [CrossRef]
- Alyahawi, A.; Alhomidi, A.M.; Al-Henhena, N. Prevalence of Pseudomonas aeruginosa (P. aeruginosa) and antimicrobial susceptibility patterns at a private hospital in Sana'a, Yemen. Univ J Pharm Res. 2018, 3, 12–8. [Google Scholar] [CrossRef]
- Kakeya, H.; Yamada, K.; Nakaie, K.; et al. [A comparison of susceptibility ofPseudomonas aeruginosa clinical isolates to carbapenem antibiotics in our hospital]. Jpn J Antibiot. 2014, 67, 241–48. [Google Scholar] [PubMed]
- Tsujimoto, H.; Fujikura, Y.; Hamamoto, T.A.; et al. Drug resistance of Pseudomonas aeruginosa based on the isolation sites and types of gastrointestinal diseases: an observational study. Fukushima J Med Sci. 2025, 71, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Karballaei Mirzahosseini, H.; Hadadi-Fishani, M.; Morshedi, K.; Khaledi, A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb Drug Resist. 2020, 26, 815–24. [Google Scholar] [CrossRef]
- Abdelraheem, W.M.; Abdelkader, A.E.; Mohamed, E.S.; Mohammed, M.S. Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene. 2020, 23, 100646. [Google Scholar] [CrossRef]
- Rangel, S.M.; Logan, L.K.; Hauser, A.R. The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio. 2014, 5, e01080-14. [Google Scholar] [CrossRef]
- Feltman, H.; Schulert, G.; Khan, S.; Jain, M.; Peterson, L.; Hauser, A.R. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology. 2001, 147, 2659–69. [Google Scholar] [CrossRef] [PubMed]
- Bahador, N.; Shoja, S.; Faridi, F.; et al. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran J Microbiol. 2019, 11, 25–30. [Google Scholar] [CrossRef]
- Gajdács, M.; Baráth, Z.; Kárpáti, K.; et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Yousefi-Avarvand, A.; Khashei, R.; Ebrahim-Saraie, H.S.; Emami, A.; Zomorodian, K.; Motamedifar, M. The frequency of exotoxin A and exoenzymes S and U genes among clinical isolates of Pseudomonas aeruginosa in Shiraz, Iran. Int J Mol Cell Med. 2015, 4, 167–73. [Google Scholar] [PubMed]
- Mitov, I.; Strateva, T.; Markova, B. Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz J Microbiol. 2010, 41, 588–95. [Google Scholar] [CrossRef]




![]() |
© GERMS 2025.
Share and Cite
Thabit, A.G.; Sediek, M.N.; Mohamed, M.S.E. The Presence of Exotoxin Genes and Biofilm Production in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates. GERMS 2025, 15, 26-36. https://doi.org/10.18683/germs.2025.1452
Thabit AG, Sediek MN, Mohamed MSE. The Presence of Exotoxin Genes and Biofilm Production in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates. GERMS. 2025; 15(1):26-36. https://doi.org/10.18683/germs.2025.1452
Chicago/Turabian StyleThabit, Amany Gamal, Magda Nasser Sediek, and Mona Sallam Embarek Mohamed. 2025. "The Presence of Exotoxin Genes and Biofilm Production in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates" GERMS 15, no. 1: 26-36. https://doi.org/10.18683/germs.2025.1452
APA StyleThabit, A. G., Sediek, M. N., & Mohamed, M. S. E. (2025). The Presence of Exotoxin Genes and Biofilm Production in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates. GERMS, 15(1), 26-36. https://doi.org/10.18683/germs.2025.1452

