Achieving Pre-Eminence of Antimicrobial Resistance Among Non-Fermenting Gram-Negative Bacilli Causing Septicemia in Intensive Care Units: A Single Center Study of a Tertiary Care Hospital
Abstract
Introduction
Methods
Determination of sample size
Inclusion and exclusion criteria
Sample collection and processing
Identification and antimicrobial susceptibility testing (AST)
Quality control
Detection of co-resistance and data analysis
Results
Discussion
Significance of this study
Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Winn, W., Jr.; Allen, S.; Janda, W.; et al. (Eds.) Nonfermenting Gram-negative bacilli. Koneman's Colour Atlas and Textbook of Diagnostic Microbiology, 6th ed.; Lippincott Williams and Wilkins Company: USA, 2006; pp. 305–391. [Google Scholar]
- Timsit, J.F.; Laupland, K.B. Update on bloodstream infections in ICUs. Curr Opin Crit Care. 2012, 18, 479–486. [Google Scholar] [CrossRef]
- Mesaros, N.; Nordmann, P.; Plésiat, P.; et al. Pseudomonas aeruginosa: Resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 2007, 13, 560–578. [Google Scholar] [CrossRef]
- Perez, F.; Hujer, A.M.; Hujer, K.M.; Decker, B.K.; Rather, P.N.; Bonomo, R.A. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007, 51, 3471–3484. [Google Scholar] [CrossRef]
- Mehta, S.; Kumar, A.; Singh, V.A.; Thakur, J.R.; Kumar, H. Central venous catheter-related blood stream infections: Incidence, risk factors and associated pathogens in a university hospital icu. JK Sci. 2020, 22, 55–60. [Google Scholar]
- Kumar, N.; Kumar, H. Intrinsic resistance: A significant characteristic in evaluating antibiotic sensitivity pattern [Letter]. Infect Drug Resist. 2022, 15, 1515–1516. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, 2018. [Google Scholar]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Corcione, S.; Bussini, L.; et al. Non-fermentative gram-negative bloodstream infection in northern Italy: A multicenter cohort study. BMC Infect Dis. 2021, 21, 806. [Google Scholar] [CrossRef]
- Gniadek, T.J.; Carroll, K.C.; Simner, P.J. Carbapenem-resistant non-glucose-fermenting Gram-negative bacilli: The missing piece to the puzzle. J Clin Microbiol. 2016, 54, 1700–1710. [Google Scholar] [CrossRef]
- Gunasekaran, S.D.; Menezes, G.A.; Nazeem, R.Z.; et al. Antibiotic resistant bacterial pathogens associated with blood stream infections and urinary tract infections among intensive care unit patients. J Pure Appl Microbiol. 2020, 14, 1737–1748. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect Dis. 2017, 17, 616. [Google Scholar] [CrossRef]
- Barker, A.K.; Brown, K.; Ahsan, M.; Sengupta, S.; Safdar, N. Social determinants of antibiotic misuse: A qualitative study of community members in Haryana, India. BMC Public Health. 2017, 17, 333. [Google Scholar] [CrossRef]
- Grewal, U.S.; Bakshi, R.; Walia, G.; Shah, P.R. Antibiotic susceptibility profiles of non-fermenting gram-negative Bacilli at a Tertiary Care Hospital in Patiala, India. Niger Postgrad Med J. 2017, 24, 121–125. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org.
- Chaturvedi, P.; Lamba, M.; Sharma, D.; Mamoria, V.P. Bloodstream infections and antibiotic sensitivity pattern in intensive care unit. Trop Doct. 2021, 51, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kumar, H.; Bala, R.; et al. Prevalence of extended spectrum beta-lactamase and carbapenemase producers in Gram negative bacteria causing blood stream infection in intensive care unit patients. J Clin Diagn Res. 2021, 15, DC04–DC07. [Google Scholar] [CrossRef]
- Birru, M.; Woldemariam, M.; Manilal, A.; et al. Bacterial profile, antimicrobial susceptibility patterns, and associated factors among bloodstream infection suspected patients attending Arba Minch General Hospital, Ethiopia. Sci Rep. 2021, 11, 15882. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.; Mainardi, C.; Muzylo, E.; Karki, N.; Cohen, N.; Sakoulas, G. Microbiological profile of organisms causing bloodstream infection in critically ill patients. J Clin Med Res. 2012, 4, 371–377. [Google Scholar] [CrossRef]
- Bandy, A.; Almaeen, A.H. Pathogenic spectrum of blood stream infections and resistance pattern in Gram-negative bacteria from Aljouf region of Saudi Arabia. PLoS ONE. 2020, 15, e0233704. [Google Scholar] [CrossRef]
- Bala, R.; Kaur, N.; Gupta, N.; Narang, U. Kocuria rosea bacteremia in chronic kidney disease patient: A rare case report. J Pure Appl Microbiol. 2021, 15, 1136–1138. [Google Scholar] [CrossRef]
- Harte, J.; Soothill, G.; Samuel, J.G.D.; Sharifi, L.; White, M. Hospital-acquired blood stream infection in an adult intensive care unit. Crit Care Res Pract. 2021, 2021, e3652130. [Google Scholar] [CrossRef]
- Oladele, R.; Akanmu, L.; Adeleke, G.; et al. Antimicrobial resistance pattern in two intensive care units in a resource limited setting. Int J Infect Dis. 2022, 116, S14. [Google Scholar] [CrossRef]
- Costescu Strachinaru, D.I.; Gallez, J.L.; François, P.M.; et al. Epidemiology and etiology of blood stream infections in a Belgian burn wound center. Acta Clin Belg. 2022, 77, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-López, R.; Solano-Gálvez, S.G.; Juárez Vignon-Whaley, J.J.; et al. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics. 2020, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chai, D.; Wang, R.; Liang, B.; Bai, N. Colistin resistance of Acinetobacter baumannii: Clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother. 2012, 67, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Tjoa, E.; Moehario, L.H.; Rukmana, A.; Rohsiswatmo, R. Acinetobacter baumannii: Role in blood stream infection in neonatal unit, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Int J Microbiol. 2013, 2013, 180763. [Google Scholar] [CrossRef]
- Manyahi, J.; Kibwana, U.; Mgimba, E.; Majigo, M. Multi-drug resistant bacteria predict mortality in bloodstream infection in a tertiary setting in Tanzania. PLoS ONE. 2020, 15, e0220424. [Google Scholar] [CrossRef]
- Di Franco, S.; Alfieri, A.; Pace, M.C.; et al. Blood stream infections from MDR bacteria. Life (Basel). 2021, 11, 575. [Google Scholar] [CrossRef]
- Chevalier, S.; Bouffartigues, E.; Bodilis, J.; et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017, 41, 698–722. [Google Scholar] [CrossRef]
- Motbainor, H.; Bereded, F.; Mulu, W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect Dis. 2020, 20, 92. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Carvalhaes, C.G.; Smith, C.J.; Diekema, D.J.; Castanheira, M. Bacterial and fungal pathogens isolated from patients with bloodstream infection: Frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012-2017). Diagn Microbiol Infect Dis. 2020, 97, 115016. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, E.J.; Hong, J.S.; et al. Major bloodstream infection-causing bacterial pathogens and their antimicrobial resistance in South Korea, 2017-2019: Phase i report from Kor-GLASS. Front Microbiol. 2022, 12, 799084. [Google Scholar] [CrossRef]
- Kullar, R.; Wenzler, E.; Alexander, J.; Goldstein, E.J.C. Overcoming Stenotrophomonas maltophilia resistance for a more rational therapeutic approach. Open Forum Infect Dis. 2022, 9, ofac095. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Martínez, J.L. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2000, 44, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Tillotson, G.; Benjumea, D.; Callahan, P.; Echols, R. The burden of bloodstream infections due to Stenotrophomonas maltophilia in the United States: A large, retrospective database study. Open Forum Infect Dis. 2020, 7, ofaa141. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Paterson, D.L.; Stewart, A.G.; Edwards, F.; Harris, P.N.A. Sphingomonas paucimobilis bloodstream infection is a predominantly community-onset disease with significant lethality. Int J Infect Dis. 2022, 119, 172–177. [Google Scholar] [CrossRef]
- Toh, H.S.; Tay, H.T.; Kuar, W.K.; Weng, T.C.; Tang, H.J.; Tan, C.K. Risk factors associated with Sphingomonas paucimobilis infection. J Microbiol Immunol Infect. 2011, 44, 289–295. [Google Scholar] [CrossRef]
- Rohilla, R.; Raina, D.; Singh, M.; Pandita, A.K.; Patwal, S. Evaluation of Sphingomonas paucimobilis as an emerging nosocomial pathogen in a teaching hospital in Uttarakhand. Iran J Microbiol. 2021, 13, 617–623. [Google Scholar] [CrossRef]
- Walayat, S.; Malik, A.; Hussain, N.; Lynch, T. Sphingomonas paucimobilis presenting as acute phlebitis: A case report. IDCases. 2017, 11, 6–8. [Google Scholar] [CrossRef]
- Bayram, N.; Devrim, İ.; Apa, H.; Gülfidan, G.; Türkyılmaz, H.N.; Günay, İ. Sphingomonas paucimobilis infections in children: 24 case reports. Mediterr J Hematol Infect Dis. 2013, 5, e2013040. [Google Scholar] [CrossRef]
- Javaid, N.; Sultana, Q.; Rasool, K.; et al. Trends in antimicrobial resistance amongst pathogens isolated from blood and cerebrospinal fluid cultures in Pakistan (2011-2015): A retrospective cross-sectional study. PLoS ONE. 2021, 16, e0250226. [Google Scholar] [CrossRef]
Intensive care unit | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Medicine | Surgery | Neurosurgery | Pediatric | Obstetrics and gynecology | Burn | |||||||||||||
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
Total no. of samples received (P) | 835 | 875 | 137 | 283 | 313 | 84 | 121 | 150 | 59 | 175 | 161 | 70 | 151 | 131 | 51 | 25 | 8 | 3 |
No. of sample flagged positive by BACTEC (S) | 262* | 243 | 65@ | 72 | 84# | 21 | 38 | 32 | 17 | 31 | 32# | 9 | 13 | 28 | 8 | 4 | 2 | 1 |
Positivity rate (P/S) % | 31.4 | 27.7 | 47.4 | 25.4 | 26.8 | 25 | 31.4 | 21.3 | 28.8 | 17.7 | 19.8 | 12.8 | 8.6 | 21.3 | 15.7 | 16 | 25 | 33.3 |
Year | Total no. of blood samples processed (N=3632) | GPC* (n1=368) | GNB or GNCB# (n2=572) | Candida spp. (n3=37) | |
---|---|---|---|---|---|
Enterobacterales (n2.1=316) | Non-Enterobacterales (n2.2=256) | ||||
2020 | 1590 | 141 (8.8) | 140 (8.8) | 130 (8.1) | 19 (0.5) |
2021 | 1638 | 185 (11.3) | 127 (7.7) | 94 (5.7) | 15 (0.9) |
2022 | 404 | 42 (10.4) | 49 (12.1) | 32 (7.9) | 3 (0.7) |
Total positivity | 10.1 % | 8.7 % | 7.0% | 1 % | |
15.7% |
Acinetobacter baumannii complex | Pseudomonas aeruginosa | Stenotrophomonas maltophilia | Sphingomonas paucimobilis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 (n=47) | 2021 (n=28) | 2022 (n=12) | 2020 (n=33) | 2021 (n=43) | 2022 (n=12) | 2020 (n=34) | 2021 (n=15) | 2022 (n=5) | 2020 (n=10) | 2021 (n= 7) | 2022 (n=3) | |
Piperacillin- tazobactam | 35 (74.4) | 22 (78.5) | 9 (75) | 12 (36.3) | 29 (67.4) | 6 (50) | NT | NT | NT | 2 (20) | 3 (42.8) | 1 (33.3) |
Ceftazidime | 29 (61.7) | 24 (85.7) | 10 (83.3) | 11 (33.3) | 20 (46.5) | 6 (50) | 11 (32.3) | 5 (33.3) | 3 (60) | 3 (30) | 3 (42.8) | 2 (66.6) |
Cefepime | 26(55.3) | 24 (85.7) | 11 (91.6) | 12 (36.3) | 17 (39.5) | 4 (33.3) | NT | NT | NT | 3 (30) | 3 (42.8) | 2 (66.6) |
Imipenem | 33 (70.2) | 22 (78.5) | 8 (66.6) | 11 (33.3) | 20 (46.5) | 5 (41.6) | NT | NT | NT | NT | NT | NT |
Meropenem | 26 (55.3) | 23 (82.1) | 9 (75) | 12 (36.3) | 18 (41.8) | 5 (41.6) | NT | NT | NT | NT | NT | NT |
Gentamicin | 35 (74.4) | 21 (75) | 9 (75) | 14 (42.4) | 19 (44.1) | 5 (41.6) | NT | NT | NT | 2 (20) | 1 (14.2) | 0 (0) |
Amikacin | 28 (59.5) | 19 (67.8) | 9 (75) | 10 (30.3) | 20 (46.5) | 4 (33.3) | NT | NT | NT | 2 (20) | 1 (14.2) | 0 (0) |
Minocycline | 16 (34) | 9 (32.1) | 5 (41.6) | NT | NT | NT | 7 (20.5) | 3(20) | 1 (20) | 0 (0) | 0 (0) | 0 (0) |
Ciprofloxacin | 24 (51) | 22 (78.5) | 10 (83.3) | 10 (30.3) | 16 (37.2) | 6 (50) | NT | NT | NT | 2 (20) | 2 (28.5) | 1 (33.3) |
Levofloxacin | 31 (65.9) | 22 (78.5) | 10 (83.3) | 10 (30.3) | 17 (39.5) | 6 (50) | 14 (41.1) | 8 (53.3) | 3 (60) | 2 (20) | 2 (28.5) | 1 (33.3) |
Trimethoprim-sulfamethoxazole | 25 (53.2) | 21 (75) | 9 (75) | NT | NT | NT | 8 (23.5) | 7 (46.6) | 1 (20) | 1 (10) | 0 (0) | 0 (0) |
Aztreonam | NT | NT | NT | NT | NT | NT | NT | NT | NT | 5 (50) | 3 (42.8) | 1 (33.3) |
Ticarcillin- clavulanic acid | NT | NT | NT | NT | NT | NT | 11 (32.3) | 4 (26.6) | 2 (40) | 2 (20) | 3 (42.8) | 1(33.3) |
Organism | Antimicrobial group/antibiotic 1 | Number of isolates resistant to antimicrobial group 1 & 2/ Number of isolates resistant to antimicrobial group 1 (%) | Number of isolates resistant to antimicrobial group 1 & 2/ Number of isolates resistant to antimicrobial group 2 (%) | p-value (p<0.05) | Odds ratio (95% CI) | Antimicrobial group/antibiotic 2 |
---|---|---|---|---|---|---|
Acinetobacter baumannii complex | Cephalosporins | 51/61 (83.6) | 51/66 (77.2) | 0.767 | 0.9 (0.5-1.5) | Piperacillin-tazobactam |
49/61 (80.3) | 49/60 (81.6) | 0.951 | 1 (0.6-1.7) | Aminoglycosides | ||
21/61 (34.4) | 21/30 (70) | 0.062 | 2 (0.9-4.3) | Minocycline | ||
46/61 (75.4) | 46/60 (76.6) | 0.952 | 1 (0.6-1.7) | Fluoroquinolones | ||
42/61 (68.8) | 42/55 (76.3) | 0.718 | 1.1 (0.6-1.9) | Trimethoprim-sulfamethoxazole | ||
49/61 (80.3) | 49/61 (80.3) | 1 | 1 (0.5-1.7) | Carbapenems | ||
Piperacillin-tazobactam | 48/66 (72.7) | 48/60 (80) | 0.725 | 1.1 (0.6-1.8) | Aminoglycosides | |
23/66 (34.8) | 23/30 (76.6) | 0.032 | 0.4 (0.2-0.9) | Minocycline | ||
45/66 (68.1) | 45/60 (75) | 0.730 | 1.1 (0.6-1.9) | Fluoroquinolones | ||
43/66 (65.1) | 43/55 (78.1) | 0.518 | 1.2 (0.6-2.1) | Trimethoprim-sulfamethoxazole | ||
51/66 (77.2) | 51/61 (83.60) | 0.767 | 1.1 (0.6-1.8) | Carbapenems | ||
Aminoglycosides | 21/60 (35) | 21/30 (70) | 0.068 | 2 (0.9-4.2) | Minocycline | |
45/60 (75) | 45/60 (75) | 1 | 1 (0.5-1.7) | Fluoroquinolones | ||
42/60 (70) | 42/60 (70) | 1 | 1 (0.5-1.7) | Trimethoprim-sulfamethoxazole | ||
48/60 (80) | 48/61 (78.6) | 0.951 | 0.9 (0.5 – 1.6) | Carbapenems | ||
Minocycline | 29/30 (96.6) | 29/60 (48.3) | 0.044 | 2 (1-3.9) | Fluoroquinolones | |
18/30 (60) | 18/60 (30) | 0.084 | 0.5 (0.2 – 1.1) | Trimethoprim-sulfamethoxazole | ||
22/30 (73.3) | 22/61 (36) | 0.058 | 0.5 (0.2 – 1) | Carbapenems | ||
Fluoroquinolones | 41/60 (68.3) | 41/60 (68.3) | 1 | 1 (0.5 – 1.7) | Trimethoprim-sulfamethoxazole | |
45/60 (75) | 45/61 (73.7) | 0.952 | 0.9 (0.5 – 1.7) | Carbapenems | ||
Trimethoprim-sulfamethoxazole | 43/60 (71.6) | 43/61 (70.5) | 0.953 | 0.9 (0.5 – 1.7) | Carbapenems | |
Pseudomonas aeruginosa | Cephalosporins | 27/35 (77.1) | 27/47 (57.4) | 0.402 | 0.9 (0.5 – 1.8) | Piperacillin-tazobactam |
21/35 (60) | 21/36 (58.3) | 0.942 | 0.9 (0.4 – 2.1) | Aminoglycosides | ||
17/35 (48.5) | 17/33 (51.5) | 0.888 | 1.1 (0.4-2.4) | Fluoroquinolones | ||
17/35 (48.5) | 17/36 (47.2) | 0.946 | 0.9 (0.4 – 2.2) | Carbapenems | ||
Piperacillin-tazobactam | 18/47 (38.3) | 18/33 (54.5) | 0.380 | 1.4 (0.6 – 3.1) | Fluoroquinolones | |
23/47 (48.9) | 23/36 (63.8) | 0.469 | 1.3 (0.6 – 2.6) | Aminoglycosides | ||
31/47 (65.9) | 31/36 (86.1) | 0.428 | 1.3 (0.6 – 2.5) | Carbapenems | ||
Aminoglycosides | 23/36 (63.8) | 23/33 (69.7) | 0.819 | 1.1 (0.5 – 2.3) | Fluoroquinolones | |
22/36 (61.1) | 22/36 (61.1) | 1 | 1 (0.4 – 2.1) | Carbapenems | ||
Fluoroquinolones | 17/33 (51.5) | 17/36 (47.2) | 0.835 | 0.9 (0.4 – 2) | Carbapenems | |
Stenotrophomonas maltophilia | Ceftazidime | 13/19 (68.4) | 13/17 (76.4) | 0.829 | 1.1(0.4 – 3) | Ticarcillin-clavulanic acid |
12/19 (63.1) | 12/16 (75) | 0.746 | 1.1 (0.4 – 3.3) | Trimethoprim-sulfamethoxazole | ||
5/19 (26.3) | 5/11 (45.4) | 0.458 | 1.72 (0.4 – 7.3) | Minocycline | ||
16/19 (84.2) | 16/25 (64) | 0.556 | 0.7 (0.3 – 1.9) | Levofloxacin | ||
Ticarcillin-clavulanic acid | 13/17 (76.4) | 13/16 (81.2) | 0.908 | 1.1 (0.3 – 2.9) | Trimethoprim-sulfamethoxazole | |
6/17 (35.3) | 6/11 (54.5) | 0.521 | 1.5 (0.4 – 6) | Minocycline | ||
12/17 (70.5) | 12/25 (48) | 0.454 | 0.6 (0.2 – 1.8) | Levofloxacin | ||
Trimethoprim-sulfamethoxazole | 7/16 (43.7) | 7/11 (63.6) | 0.571 | 1.4 (0.4 – 5.3) | Minocycline | |
11/16 (68.7) | 11/25 (44) | 0.402 | 0.6 (0.2 – 1.8) | Levofloxacin | ||
Minocycline | 11/11 (100) | 11/25 (44) | 0.142 | 0.4 (0.1 – 1.3) | Levofloxacin | |
Sphingomonas paucimobilis | β-lactam combination agents | 2/6 (33.3) | 2/8 (25) | 0.800 | 0.7 (0.08 – 6.9) | Cephalosporins |
3/6 (50) | 3/3 (100) | 0.521 | 2 (0.2 – 16.6) | Aminoglycosides | ||
4/6 (66.6) | 4/5 (80) | 0.844 | 1.2 (0.2 – 7.4) | Fluoroquinolones | ||
3/6 (50) | 3/9 (33.3) | 0.676 | 0.6 (0.09 – 4.4) | Aztreonam | ||
Cephalosporins | 1/8 (12.5) | 1/8 (12.5) | 1 | 1 (0.05 – 18.9) | Aminoglycosides | |
4/8 (50) | 4/5 (80) | 0.604 | 1.6 (0.2 – 9.4) | Fluoroquinolones | ||
7/8 (87.5) | 7/9 (77.7) | 0.870 | 0.8 (0.2 – 3.6) | Aztreonam | ||
Aminoglycosides | 5/8 (62.5) | 5/5 (100) | 0.581 | 1.6 (0.3 – 8.4) | Fluoroquinolones | |
7/8 (87.5) | 7/9 (77.7) | 0.870 | 0.8 (0.2 – 3.6) | Aztreonam | ||
Fluoroquinolones | 5/5 (100) | 5/9 (55.5) | 0.485 | 0.5 (0.1 – 2.9) | Aztreonam |
© GERMS 2023.
Share and Cite
Kumar, H.; Kaur, N.; Kumar, N.; Chauhan, J.; Bala, R.; Chauhan, S. Achieving Pre-Eminence of Antimicrobial Resistance Among Non-Fermenting Gram-Negative Bacilli Causing Septicemia in Intensive Care Units: A Single Center Study of a Tertiary Care Hospital. GERMS 2023, 13, 108-120. https://doi.org/10.18683/germs.2023.1374
Kumar H, Kaur N, Kumar N, Chauhan J, Bala R, Chauhan S. Achieving Pre-Eminence of Antimicrobial Resistance Among Non-Fermenting Gram-Negative Bacilli Causing Septicemia in Intensive Care Units: A Single Center Study of a Tertiary Care Hospital. GERMS. 2023; 13(2):108-120. https://doi.org/10.18683/germs.2023.1374
Chicago/Turabian StyleKumar, Harit, Narinder Kaur, Nitin Kumar, Jyoti Chauhan, Rosy Bala, and Shubham Chauhan. 2023. "Achieving Pre-Eminence of Antimicrobial Resistance Among Non-Fermenting Gram-Negative Bacilli Causing Septicemia in Intensive Care Units: A Single Center Study of a Tertiary Care Hospital" GERMS 13, no. 2: 108-120. https://doi.org/10.18683/germs.2023.1374
APA StyleKumar, H., Kaur, N., Kumar, N., Chauhan, J., Bala, R., & Chauhan, S. (2023). Achieving Pre-Eminence of Antimicrobial Resistance Among Non-Fermenting Gram-Negative Bacilli Causing Septicemia in Intensive Care Units: A Single Center Study of a Tertiary Care Hospital. GERMS, 13(2), 108-120. https://doi.org/10.18683/germs.2023.1374