Clinical, Biochemical and Pulmonary CT Imaging Features for Hepatobiliary Involvement in COVID-19
Abstract
Introduction
Methods
Radio-imaging parameters
Statistical evaluation
Results
Discussion
Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, F.; Yu, T.; Du, R.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Jugulete, G.; Pacurar, D.; Pavelescu, M.L.; et al. Clinical and evolutionary features of SARS-CoV-2 infection (COVID-19) in children, a Romanian perspective. Children (Basel). 2022, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Zhang, L.; Liu, Y.; Chen, Q.; Sun, Y. COVID-19 and the liver: A systematic review. J Med Virol. 2020, 92, 1289–1295. [Google Scholar]
- Alisi, A.; Bortolotto, V.; Dalla Pozza, R.; Donato, V. Liver involvement in COVID-19: A review. J Hepatol. 2020, 73, 811–823. [Google Scholar]
- World Health Organization. Romania. 2021. WHO Coronavirus Disease (COVID-19) Dashboard with vaccination data. Accessed on 01.10.2021. [CrossRef]
- Dumea, E.; Lazar, M.; Barbu, E.C.; Chitu, C.E.; Ion, D.A. Pulmonary involvement in SARS-CoV-2 infection estimates myocardial injury risk. Medicina (Kaunas). 2022, 58, 1436. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, L.; Li, J.; et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol. 2020, 18, 1561–1566. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.G. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J Clin Transl Hepatol. 2020, 8, 13–17. [Google Scholar] [CrossRef]
- Nardo, A.D.; Schneeweiss-Gleixner, M.; Bakail, M.; Dixon, E.D.; Lax, S.F.; Trauner, M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021, 41, 20–32. [Google Scholar] [CrossRef]
- Chai, X.; Hu, L.; Zhang, Y.; et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. [CrossRef]
- Wu, Y.; Guo, C.; Tang, L. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef]
- Bertolini, A.; van de Peppel, I.P.; Bodewes, F.A.J.A.; et al. Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis. Hepatology. 2020, 72, 1864–1872. [Google Scholar] [CrossRef]
- Abeysuriya, V.; Seneviratne, S.L.; de Silva, A.; et al. Combination of cycle threshold time, absolute lymphocyte count and neutrophil:lymphocyte ratio is predictive of hypoxia in patients with SARS-CoV-2 infection. Trans R Soc Trop Med Hyg. 2022, 116, 628–635. [Google Scholar] [CrossRef]
- Anghel, A.M.; Niculae, C.M.; Manea, E.D.; et al. The impact of tocilizumab on radiological changes assessed by quantitative chest CT in severe COVID-19 patients. J Clin Med. 2022, 11, 1247. [Google Scholar] [CrossRef] [PubMed]
- Sodeifian, F.; Seyedalhosseini, Z.S.; Kian, N.; et al. Drug-induced liver injury in COVID-19 patients: A systematic review. Front Med (Lausanne). 2021, 8, 731436. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- de la Rica, R.; Borges, M.; Aranda, M.; et al. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: A retrospective cohort study. Microorganisms. 2020, 8, 1106. [Google Scholar] [CrossRef]
- Lazar, M.; Barbu, E.C.; Chitu, C.E.; et al. Mortality predictors in severe SARS-CoV-2 infection. Medicina (Kaunas). 2022, 58, 945. [Google Scholar] [CrossRef]
- Edeas, M.; Saleh, J.; Peyssonnaux, C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020, 97, 303–305. [Google Scholar] [CrossRef]
- Cheng, L.; Li, H.; Li, L.; et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal. 2020, 34, e23618. [Google Scholar] [CrossRef]
- Kaushal, K.; Kaur, H.; Sarma, P.; et al. Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis. J Crit Care. 2022, 67, 172–181. [Google Scholar] [CrossRef]
- Shen, J.X.; Zhuang, Z.H.; Zhang, Q.X.; et al. Risk factors and prognosis in patients with COVID-19 and liver injury: A retrospective analysis. J Multidiscip Healthc. 2021, 14, 629–637. [Google Scholar] [CrossRef]
- Lazar, M.; Barbu, E.C.; Chitu, C.E.; et al. Pericardial involvement in severe COVID-19 patients. Medicina (Kaunas). 2022, 58, 1093. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ. 2005, 172, 367–79. [Google Scholar] [CrossRef]
- Miron, V.D.; Draganescu, A.C.; Sandulescu, O.; et al. Rev Chim. 2018, 69, 2749–2753. [CrossRef]
| Evaluated parameter | Group A (patients with hepatobiliary involvement) | Group B (patients without hepatobiliary involvement) | p-value |
|---|---|---|---|
| SaO2 (%) | 92 [88.5; 96] | 97 [94; 98] | <0.001 |
| Hospitalization (days) | 12 [9; 15] | 7 [1; 11] | <0.001 |
| Hemoglobin (g/dL) | 14.1 [13.3; 15.2] | 13.9 [12.7; 14.5] | 0.612 |
| RBC (×106/µL) | 5.1 [4.3; 6.1] | 5.4 [4.4; 5.9] | 0.522 |
| ALT (IU/L) | 57 [36; 94] | 22 [15.7; 28] | N/A |
| AST (IU/L) | 44 [33; 65] | 24.5 [20.7; 29] | N/A |
| TB (mg/dL) | 0.7 [0.5; 0.9] | 0.6 [0.5; 0.7] | N/A |
| DB (mg/dL) | 0.2 [0.2; 0.3] | 0.2 [0.1; 0.2] | N/A |
| GGT (IU/L) | 70 [43.5; 119.7] | 22.5 [16; 34.2] | N/A |
| Serum albumin (g/dL) | 3.8 [3.5; 4.2] | 4.2 [3.6; 4.7] | 0.011 |
| Total serum proteins (g/dL) | 7.1 [6.6; 7.6] | 7.2 [6.9; 7.7] | 0.204 |
| PT (sec) | 12.6 [11.8; 13.9] | 12 [11.5; 12.3] | 0.009 |
| aPTT (sec) | 30.5 [27.8; 33.9] | 29 [28; 30.6] | 0.312 |
| INR | 1 [0.9; 1.1] | 1 [0.9; 1] | 0.009 |
| D-Dimers HS (ng/mL) | 194 [117; 382] | 133 [82; 179] | 0.426 |
| CRP (mg/dL) | 13.9 [4.4; 45.3] | 5.7 [1.2; 12.2] | 0.061 |
| Fibrinogen (mg/dL) | 404 [320.7; 522.2] | 366.3 [282; 457.5] | 0.101 |
| Serum ferritin (ng/mL) | 429.3 [208.6; 831.9] | 106.7 [57.9; 278.5] | 0.006 |
| IL-6 (pg/mL) | 12.5 [1.8; 105.1] | 9.2 [3.9; 40.7] | 0.815 |
| TNF-α (pg/mL) | 1.9 [0.3; 8.5] | 0.9 [0; 10.7] | 0.711 |
| Imaging characteristics | Group A (patients with hepatobiliary involvement) | Group B (patients without hepatobiliary involvement) | p-value |
|---|---|---|---|
| Degree of lung injury | 2 [1; 2] | 1 [1; 2] | 0.421 |
| Number of pulmonary lobes with inflammatory changes | 5 [3; 5] | 5 [4; 5] | 0.509 |
| Degree of GGO involvement | 1 [1; 2] | 1 [1; 2] | 0.825 |
| Crazy paving aspect | 1 [0; 2] | 1 [0; 1] | 0.110 |
| Vascular ectasia | 0 [0; 1] | 0 [0; 1] | 0.636 |
| Bronchiectasis | 0 [0; 1] | 0 [0; 1] | 0.312 |
| Atelectatic changes | 1 [0; 2] | 1 [0; 1] | 0.202 |
| Consolidation areas | 0 [0; 2] | 0 [0; 1] | 0.331 |
| Mediastinal adenopathies | 0 [0; 1] | 0 [0; 1] | 0.514 |
| Evaluated parameter | Spearman’s rho coefficient | p-value |
|---|---|---|
| Sex (1= male; 2=female) | -0.21 | 0.011 |
| Age | 0.17 | 0.042 |
| SaO2 (%) | -0.36 | <0.001 |
| Hospitalization (days) | 0.41 | <0.001 |
| Hemoglobin (g/dL) | -0.1 | 0.251 |
| RBC (×106/µL) | -0.13 | 0.210 |
| Serum albumin (g/dL) | -0.25 | 0.031 |
| Total serum proteins (g/dL) | -0.12 | 0.330 |
| PT (sec) | 0.18 | 0.032 |
| aPTT (sec) | 1.12 | 0.231 |
| INR | 0.2 | 0.024 |
| D-Dimers HS (ng/mL) | 0.23 | 0.012 |
| CRP (mg/dL) | 0.23 | 0.013 |
| Fibrinogen (mg/dL) | 0.15 | 0.092 |
| Serum ferritin (ng/mL) | 0.35 | 0.002 |
| IL-6 (pg/mL) | 0.01 | 0.921 |
| TNF-α (pg/mL) | 0.1 | 0.453 |
| Degree of lung injury | 0.07 | 0.392 |
| Number of pulmonary lobes with inflammatory changes | 0.01 | 0.962 |
| Degree of GGO involvement | -0.02 | 0.810 |
| Crazy paving aspect | 0.1 | 0.244 |
| Vascular ectasia | 0.01 | 0.853 |
| Bronchiectasis | 0.06 | 0.441 |
| Atelectatic changes | 0.1 | 0.261 |
| Consolidation areas | 0.08 | 0.332 |
| Mediastinal adenopathies | 0.05 | 0.530 |
| Evaluated parameter | Group A (patients with hepatobiliary involvement) | ||||
|---|---|---|---|---|---|
| Group A1 (26 patients with hepatocytolysis) | Group A2 (12 patients with cholestasis) | Group A3 (57 patients with mixed involvement) | ANOVA p-value | LSD posthoc analysis (A1 vs A2, A2 vs A3, A1 vs A3) | |
| SaO2 (%) | 92 [88; 96.2] | 95 [93; 98] | 90.5 [88.2;95] | 0.432 | 0.532; 0.211; 0.407 |
| Hospitalization (days) | 13 [9; 15.7] | 13.5 [8.5; 19.5] | 12 [9; 15] | 0.821 | 0.724; 0.935; 0.521 |
| Hemoglobin (g/dL) | 14.6 [13.9; 15.7] | 15.1 [14.1; 15.5] | 14.1 [13.1; 15.1] | 0.331 | 0.312; 0.102; 0.422 |
| RBC (×106/µL) | 5.2 [4.4; 6.3] | 5.3 [5.1; 6.2] | 4.9 [4.1; 5.8] | 0.416 | 0.611; 0.207; 0.333 |
| ALT (IU/L) | 49 [30.7; 64.2] | 23 [17; 27] | 80 [48; 121.5] | N/A | N/A |
| AST (IU/L) | 40.5 [34.7; 51.7] | 24 [20.2; 29.7] | 53 [39; 76.5] | N/A | N/A |
| TB (mg/dL) | 0.7 [0.5; 0.9] | 0.7 [0.6; 0.9] | 0.7 [0.5; 0.9] | N/A | N/A |
| DB (mg/dL) | 0.2 [0.1; 0.3] | 0.3 [0.3; 0.4] | 0.2 [0.2; 0.3] | N/A | N/A |
| GGT (IU/L) | 35 [27; 37] | 81.5 [52.5; 116.7] | 97 [62; 137] | N/A | N/A |
| Serum albumin (g/dL) | 3.6 [3.4; 4.2] | 4 [3.8; 4.2] | 3.7 [3.5; 4.2] | 0.522 | 0.314; 0.225; 0.934 |
| Total serum proteins (g/dL) | 6.9 [6.6; 7.6] | 7.4 [6.8; 7.7] | 7.1 [6.5; 7.6] | 0.713 | 0.623; 0.415; 0.630 |
| PT (sec) | 13.3 [11.7; 14.4] | 12.2 [11.3; 13.5] | 12.6 [11.8; 13.9] | 0.824 | 0.811; 0.621; 0.725 |
| aPTT (sec) | 31.1 [29.3; 36] | 27.8 [27.3; 33.9] | 30.1 [27.1; 32.5] | 0.341 | 0.101; 0.327; 0.505 |
| INR | 1.1 [1; 1.1] | 1 [0.9; 1.1] | 1 [1; 1.1] | 0.833 | 0,810; 0.614; 0.737 |
| D-Dimers HS (ng/mL) | 251 [95; 272] | 117 [85; 404] | 245 [143.5; 482] | 0.041 | 0.604; 0.239; 0.010 |
| CRP (mg/dL) | 7.8 [2.8; 31.5] | 27.7 [19.1; 89.3] | 13.2 [4.4; 52.9] | 0.122 | 0.031; 0.107; 0.235 |
| Fibrinogen (mg/dL) | 380 [320.7; 520] | 465 [326; 599.8] | 404 [313; 524.5] | 0.311 | 0.111; 0.223; 0.630 |
| Serum ferritin (ng/mL) | 216.4 [89.5; 597.4] | 287.4 [116; 531.8] | 627.3 [387.1; 1005.9] | 0.007 | 0.734; 0.021; 0.007 |
| IL-6 (pg/mL) | 7.3 [0.2; 29.4] | 2.8 [1.4; 93.2] | 19.3 [5.2; 156.3] | 0.203 | 0.922; 0.218; 0.103 |
| TNF-α (pg/mL) | 1.5 [0.1; 13] | 0.3 [0; 0.6] | 4 [1.5; 9.7] | 0.424 | 0.201; 0.711; 0.233 |
| Degree of lung injury | 1 [1; 2.2] | 2 [1; 2.7] | 2 [1; 2] | 0.436 | 0.414; 0.805; 0.208 |
| Number of pulmonary lobes with inflammatory changes | 5 [2; 5] | 5 [1; 5] | 5 [4; 5] | 0.425 | 0.913; 0.325; 0.419 |
| Degree of GGO involvement | 1 [0.7; 2] | 1.5 [0.2; 2] | 1 [1; 2] | 0.914 | 0.808; 0.813; 0.936 |
| Crazy paving aspect | 1 [0; 1.2] | 1 [0; 2] | 1 [0. 1.5] | 0.505 | 0.227; 0.512; 0.407 |
| Vascular ectasia | 0 [0; 1.2] | 0 [0; 1] | 0 [0; 1] | 0.814 | 0.836; 0.617; 0.623 |
| Bronchiectasis | 0 [0; 1] | 0 [0; 1] | 0 [0; 1] | 0.809 | 0.507; 0.522; 0.919 |
| Atelectatic changes | 0 [0; 1] | 0.5 [0; 2] | 1 [0; 2] | 0.012 | 0.111; 0.708; 0.004 |
| Consolidation areas | 0 [0; 2] | 0 [0; 1.7] | 0 [0; 1.5] | 0.919 | 0.943; 0.926; 0.841 |
| Mediastinal adenopathies | 0 [0; 1] | 0 [0; 1] | 0 [0; 1] | 0.727 | 0.417; 0.625; 0.628 |
© GERMS 2023.
Share and Cite
Dumea, E.; Barbu, E.C.; Chiţu, C.E.; Lazăr, M.; Ion, D.A. Clinical, Biochemical and Pulmonary CT Imaging Features for Hepatobiliary Involvement in COVID-19. Germs 2023, 13, 121-129. https://doi.org/10.18683/germs.2023.1375
Dumea E, Barbu EC, Chiţu CE, Lazăr M, Ion DA. Clinical, Biochemical and Pulmonary CT Imaging Features for Hepatobiliary Involvement in COVID-19. Germs. 2023; 13(2):121-129. https://doi.org/10.18683/germs.2023.1375
Chicago/Turabian StyleDumea, Eduard, Ecaterina Constanţa Barbu, Cristina Emilia Chiţu, Mihai Lazăr, and Daniela Adriana Ion. 2023. "Clinical, Biochemical and Pulmonary CT Imaging Features for Hepatobiliary Involvement in COVID-19" Germs 13, no. 2: 121-129. https://doi.org/10.18683/germs.2023.1375
APA StyleDumea, E., Barbu, E. C., Chiţu, C. E., Lazăr, M., & Ion, D. A. (2023). Clinical, Biochemical and Pulmonary CT Imaging Features for Hepatobiliary Involvement in COVID-19. Germs, 13(2), 121-129. https://doi.org/10.18683/germs.2023.1375
