Diabetic Foot Infection and Osteomyelitis. Are Deep-Tissue Cultures Necessary?
Abstract
Introduction
Methods
Study population
Microbiological methods
Statistics
Results
Discussion
Conclusions
Author Contributions
Funding
Conflicts of interest
References
- Skrepnek, G.H.; Mills, J.L., Sr.; Armstrong, D.G. A diabetic emergency one million feet long: Disparities and burdens of illness among diabetic foot ulcer cases within Emergency Departments in the United States, 2006-2010. PLoS ONE 2015, 10, e0134914. [Google Scholar] [CrossRef]
- Richard, J.L.; Sotto, A.; Lavigne, J.P. New insights in diabetic foot infection. World J Diabetes 2011, 2, 24–32. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Aragón-Sánchez, J.; Diggle, M.; et al. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab Res Rev 2016, 32, 45–74. [Google Scholar] [CrossRef]
- Henig, O.; Pogue, J.M.; Cha, R. Epidemiology of diabetic foot infection in the Metro-Detroit area with a focus on independent predictors for pathogens resistant to recommended empiric antimicrobial therapy. Open Forum Infect Dis. 2018, 5, ofy245. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; twenty-seventh informational supplement; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Food and Drug Administration (FDA). Prescribing Information for Tygacil (Tigecycline). 2010. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/205645lbl.pdf (accessed on 14 September 2020).
- The European Committee on Antimicrobial Susceptibility Testing. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for Interpretation of MICs and Zone Diameters. 2016. Available online: http://www.eucast.org (accessed on 14 September 2020).
- Poulou, A.; Grivakou, E.; Vrioni, G.; et al. Modified CLSI extended-spectrum beta-lactamase (ESBL) confirmatory test for phenotypic detection of ESBLs among Enterobacteriaceae producing various beta-lactamases. J Clin Microbiol 2014, 52, 1483–1489. [Google Scholar] [CrossRef]
- Polsfuss, S.; Bloemberg, G.V.; Giger, J.; Meyer, V.; Böttger, E.C.; Hombach, M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2011, 49, 2798–2803. [Google Scholar] [CrossRef]
- Tsakris, A.; Poulou, A.; Pournaras, S.; et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother 2010, 65, 1664–1671. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Slater, R.A.; Lazarovitch, T.; Boldur, I.; et al. Swab cultures accurately identify bacterial pathogens in diabetic foot wounds not involving bone. Diabet Med 2004, 21, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, F.; Gülsün, S.; Tekin, R.; Hoşoğlu, S.; Acemoğlu, H. Comparison of microbiological results of deep tissue biopsy and superficial swab in diabetic foot infections. J Microbiol Infect Dis 2011, 1, 122–127. [Google Scholar] [CrossRef]
- Pellizzer, G.; Strazzabosco, M.; Presi, S.; et al. Deep tissue biopsy vs. superficial swab culture monitoring in the microbiological assessment of limb-threatening diabetic foot infection. Diabet Med 2001, 18, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Sapico, F.L.; Canawati, H.N.; Witte, J.L.; Montgomerie, J.Z.; Wagner, F.W., Jr.; Bessman, A.N. Quantitative aerobic and anaerobic bacteriology of infected diabetic feet. J Clin Microbiol 1980, 12, 413–420. [Google Scholar] [CrossRef]
- Johani, K.; Fritz, B.G.; Bjarnsholt, T.; et al. Understanding the microbiome of diabetic foot osteomyelitis: Insights from molecular and microscopic approaches. Clin Microbiol Infect 2019, 25, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.G.; Waller, J.; Palestro, C.J.; et al. Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium in 111 oxyquinoline. JAMA 1991, 266, 1246–1251. [Google Scholar] [CrossRef]
- Roberts, A.D.; Simon, G.L. Diabetic foot infections: The role of microbiology and antibiotic treatment. Semin Vasc Surg 2012, 25, 75–81. [Google Scholar] [CrossRef]
- Uçkay, I.; Gariani, K.; Pataky, Z.; Lipsky, B.A. Diabetic foot infections: State-of-the-art. Diabetes Obes Metab 2014, 16, 305–316. [Google Scholar] [CrossRef]
- Gadepalli, R.; Dhawan, B.; Sreenivas, V.; Kapil, A.; Ammini, A.C.; Chaudhry, R. A clinico-microbiological study of diabetic foot ulcers in an Indian tertiary care hospital. Diabetes Care 2006, 29, 1727–1732. [Google Scholar] [CrossRef]
- Zubair, M.; Malik, A.; Ahmad, J. Incidence, risk factors for amputation among patients with diabetic foot ulcer in a North Indian tertiary hospital. Foot (Edinb) 2012, 22, 24–30. [Google Scholar] [CrossRef]
- Barwell, N.D.; Devers, M.C.; Kennon, B.; et al. Diabetic foot infection: Antibiotic therapy and good practice recommendations. Int J Clin Pract. 2017, 71. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, M.; Papanas, N.; Panagopoulos, P.; Panopoulou, M.; Maltezos, E. Antibiotic resistance in diabetic foot soft tissue infections: A series from Greece. Int J Low Extrem Wounds 2017, 16, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O.; et al. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect Dis 2019, 19, 609. [Google Scholar] [CrossRef] [PubMed]
| DFI & DFO Patients (n = 83) | |
|---|---|
| Peripheral artery disease, n (%) | 82 (98.8) |
| Diabetic neuropathy, n (%) | 80 (96.4) |
| Cardiovascular disease, n (%) | 53 (63.9) |
| Chronic kidney disease, n (%) | 21 (26.5) |
| DFI (n = 68) | DFO (n = 15) | Total (DFI + DFO) (n = 83) | p | |
|---|---|---|---|---|
| Age, mean (SD) | 73.1 (10.6) | 73.1 (10.6) | 73.1 (10.6) | 73.1 (10.6) |
| Charlson comorbidity index, median (IQR) | 6 (5–7) | 6 (5–7) | 6 (5–7) | 6 (5–7) |
| Male, n (%) | 42 (61.8) | 42 (61.8) | 42 (61.8) | 42 (61.8) |
| Prior hospitalization, n (%) | 27 (39.7) | 27 (39.7) | 27 (39.7) | 27 (39.7) |
| Prior antimicrobial use, n (%) | 37 (54.4) | 37 (54.4) | 37 (54.4) | 37 (54.4) |
| Oral hypoglycemic drugs, n (%) | 18 (26.5) | 18 (26.5) | 18 (26.5) | 18 (26.5) |
| Insulin, n (%) | 47 (69.1) | 47 (69.1) | 47 (69.1) | 47 (69.1) |
| Appropriate empiric antimicrobial treatment, n (%) | 40 (58.8) | 40 (58.8) | 40 (58.8) | 40 (58.8) |
| Duration of hospitalization, median (IQR) | 15.5 (8.8–21) | 15.5 (8.8–21) | 15.5 (8.8–21) | 15.5 (8.8–21) |
| Pathogen | Total Number of Isolates n = 307 | Culture Deep Tissue n = 131 (%)/Swab n = 176 (%) | Resistance Deep Tissue n = 131 (%) | Resistance Swab n = 176 (%) |
|---|---|---|---|---|
| Gram-positive | ||||
| Enterococcus spp. | 59 | 30 (51)/29 (49) | ||
| E. faecalis | 50 | 26 (52)/24 (48) | 0 | 1 (4.2) MDR |
| E. avium | 6 | 2 (33.3)/4 (66.7) | 0 | 0 |
| E. faecium | 3 | 2 (66.7)/1 (33.3) | 1 (50) VRE | 0 |
| Staphylococcus spp. | 76 | 32 (42.1)/44 (57.9) | ||
| S. aureus | 34 | 12 (35.3)/22 (64.7) | 2 (16.7) MRSA | 7 (31.8) MRSA |
| S. epidermidis | 20 | 11 (55)/9 (45) | 8 (72.7) MRSE | 8 (88.9) MRSE |
| a Other CNS | 22 | 9 (40.1)/13 (59.8) | 3 (33.3) MRS | 5 (38.5) MRS |
| Streptococcus spp. | 12 | 4 (33.3)/8 (66.7) | ||
| S. agalactiae | 5 | 1 (20)/4 (80) | 0 | 0 |
| S. constellatus | 4 | 2 (50)/2 (50) | 0 | 0 |
| b Other streptococci | 3 | 1 (33.3)/2 (66.7) | 0 | 0 |
| Gram-negative | ||||
| Proteus spp. | 34 | 15 (44.1)/19 (55.9) | ||
| P. mirabilis | 27 | 12 (44.4)/15 (55.6) | 3 (25) MDR 1 (8.3) XDR | 2 (13.3) MDR 1 (6.7) XDR |
| P. vulgaris | 5 | 2 (40)/3 (60) | 0 | 0 |
| P. penneri | 2 | 1 (50)/1 (50) | 0 | 0 |
| Pseudomonas spp. | 20 | 10 (50)/10 (50) | ||
| P. aeruginosa | 18 | 9 (50)/9 (50) | 1 (1) MDR 1 (%) XDR | 1 (1) MDR |
| P. putida | 2 | 1 (50)/1 (50) | 0 | 0 |
| Klebsiella spp. | 21 | 8 (38)/13 (62) | ||
| K. pneumoniae | 14 | 5 (36%)/9 (64) | 3 (60) MDR | 6 (66.7) MDR |
| K. oxytoca | 7 | 3 (42.8)/4 (57.2) | 0 | 0 |
| Escherichia coli | 17 | 7 (41)/10 (59) | 1 (14.3) MDR | 1 (10) MDR |
| Morganella spp. | 13 | 6 (46)/7 (54) | 1 (16.7) MDR 1 (16.7) XDR | 1 (14.3) MDR |
| Enterobacter spp. | 11 | 4 (36.4)/7 (63.6) | 2 (50) MDR | 2 (28.6) |
| Citrobacter spp. | 5 | 2 (40)/3 (60) | 0 | 0 |
| Serratia spp. | 6 | 2 (33.3)/4 (66.6) | 0 | 2 (50) MDR |
| Acinetobacter spp. | 5 | 3 (60)/2 (40) | 2 (66.7) MDR 1 (33.3) XDR | 2 (100) MDR |
| Providencia spp. | 5 | 1 (20)/4 (80) | 1 | 1 |
| cOther Gram-negative | 7 | 1 (14.3)/6 (85.7) | 1 (100) MDR | 1 (16.7) MDR |
| dAnaerobes | 16 | 5 (31.3)/11 (68.7) | 1 (20) MDR | 1 (9.1) MDR |
| Univariate Analysis p | Multivariate Analysis p | OR (95% CI) | |
|---|---|---|---|
| Age (years) | 0.050 | 0.046 | 0.92 (0.85–1) |
| Gender (female) | 0.404 | 0.864 | 1.14 (0.26–4.89) |
| Duration of diabetes (years) | 0.643 | 0.451 | 0.97 (0.91–1.04) |
| Prior hospitalization | 0.001 | 0.697 | 1.34 (0.3–5.92) |
| Prior antimicrobial treatment | <0.001 | 0.002 | 28.62 (3.43–238.65) |
| Fever | 0.647 | 0.266 | 2.3 (0.53–10.01) |
| Univariate Analysis p | Multivariate Analysis p | OR (95% CI) | |
|---|---|---|---|
| Age (years) | 0.278 | 0.183 | 0.9 (0.77–1.05) |
| Gender (female) | 0.294 | 0.517 | 0.46 (0.04–4.86) |
| Duration of diabetes (years) | 0.044 | 0.050 | 1.25 (1–1.58) |
| Prior hospitalization | 0.679 | 0.863 | 1.5 (0.02–152) |
| Prior antimicrobial treatment | 0.458 | 0.936 | 0.82 (0.007–99.1) |
| Fever | 0.176 | 0.307 | 0.18 (0.007–4.74) |
| MDR | 0.180 | 0.924 | 1.17 (0.04–31) |
| Effective empirical antimicrobial treatment | 0.003 | 0.040 | 34.77 (1.18–1027.6) |
| Duration of antimicrobial treatment | 0.840 | 0.986 | 1 (0.86–1.16) |
© GERMS 2025.
Share and Cite
Andrianaki, A.M.; Koutserimpas, C.; Kafetzakis, A.; Tavlas, E.; Maraki, S.; Papadakis, J.A.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Diabetic Foot Infection and Osteomyelitis. Are Deep-Tissue Cultures Necessary? GERMS 2020, 10, 346-355. https://doi.org/10.18683/germs.2020.1227
Andrianaki AM, Koutserimpas C, Kafetzakis A, Tavlas E, Maraki S, Papadakis JA, Ioannou P, Samonis G, Kofteridis DP. Diabetic Foot Infection and Osteomyelitis. Are Deep-Tissue Cultures Necessary? GERMS. 2020; 10(4):346-355. https://doi.org/10.18683/germs.2020.1227
Chicago/Turabian StyleAndrianaki, Angeliki M., Christos Koutserimpas, Alexandros Kafetzakis, Emmanouil Tavlas, Sofia Maraki, John A. Papadakis, Petros Ioannou, George Samonis, and Diamantis P. Kofteridis. 2020. "Diabetic Foot Infection and Osteomyelitis. Are Deep-Tissue Cultures Necessary?" GERMS 10, no. 4: 346-355. https://doi.org/10.18683/germs.2020.1227
APA StyleAndrianaki, A. M., Koutserimpas, C., Kafetzakis, A., Tavlas, E., Maraki, S., Papadakis, J. A., Ioannou, P., Samonis, G., & Kofteridis, D. P. (2020). Diabetic Foot Infection and Osteomyelitis. Are Deep-Tissue Cultures Necessary? GERMS, 10(4), 346-355. https://doi.org/10.18683/germs.2020.1227
