Diode Laser Overtone Spectroscopy of Methyl Iodide at 850 nm
Abstract
1. Introduction
2. Experimental Details
Wavelength Modulation Spectroscopy
3. Experimental Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| DL | Diode laser |
| F–P | Fabry–Perot |
| HVOC | Halogenated volatile organic compound |
| HWHM | Half-width at half-maximum |
| IR | Infrared |
| NIR | Near-infrared |
| PD | Photodiode |
| RT | Room temperature |
| S/N | Signal-to-noise |
| TDLAS | Tunable diode laser absorption spectroscopy |
| WMS | Wavelength modulation spectroscopy |
Appendix A. Frequency Modulation in the High-Amplitude Regime

References
- Lucchesini, A.; Gozzini, S. Diode Laser Spectroscopy of Methyl Fluoride Overtones at 850 nm. J. Quant. Spectrosc. Radiat. Transfer. 2013, 130, 352–358. [Google Scholar] [CrossRef]
- Lucchesini, A.; Gozzini, S. Diode Laser Spectroscopy of Methyl Chloride Overtones at 850–860 nm. J. Quant. Spectrosc. Radiat. Transfer. 2016, 168, 170–175. [Google Scholar] [CrossRef]
- Laube, J.C.; Tegtmeier, S.; Fernandez, R.P.; Harrison, J.; Hu, L.; Krummel, P.; Mahieu, E.; Park, S.; Western, L. Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol. In Scientific Assessment of Ozone Depletion: 2022; World Meteorological Organization: Geneva, Switzerland, 2022; Chapter 1; pp. 55–113. [Google Scholar]
- Herzberg, G.; Herzberg, L. Absorption Spectrum of Methyl Iodide in the Near Infrared. Can. J. Res. 1949, 27b, 332–338. [Google Scholar] [CrossRef]
- Verleger, H. Das Rotationsschwingungsspektrum der Methylhalogenide im Photographischen Ultrarot bei 1.11 μm. Z. Phys. 1935, 98, 342–352. [Google Scholar] [CrossRef]
- Ishibashi, C.; Sasada, H. Near-Infrared Laser Spectrometer with Sub-Doppler Resolution, High Sensitivity, and Wide Tunability: A Case Study in the 1.65-μm Region of CH3I Spectrum. J. Mol. Spectrosc. 2000, 200, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Law, M.M. Joint Local- and Normal-Mode Studies of the Overtone Spectra of the Methyl Halides: CH3F, CH3Cl, CH3Br, CD3Br, and CH3I. J. Chem. Phys. 1999, 111, 10021–10033. [Google Scholar] [CrossRef]
- Ishibashi, C.; Saneto, R.; Sasada, H. Infrared Radio-Frequency Double-Resonance Spectroscopy of Molecular Vibrational-Overtone Bands Using a Fabry–Perot Cavity-Absorption Cell. J. Opt. Soc. Am. B 2001, 18, 1019–1030. [Google Scholar] [CrossRef]
- Bjorklund, G.C. Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions. Opt. Lett. 1980, 25, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transfer. 2017, 203, 3–69, HITRAN2016 Special Issue. [Google Scholar] [CrossRef]
- Dicke, R.H. The Effect of Collision upon the Doppler Width of the Spectral Lines. Phys. Rev. 1953, 89, 472–473. [Google Scholar] [CrossRef]
- Edlén, B. The Refractive Index of Air. Metrologia 1966, 2, 71–80. [Google Scholar] [CrossRef]
- Hoffman, K.J.; Davies, P.B. Pressure Broadening Coefficients of ν5 Fundamental Band Lines of CH3I at 7 μm Measured by Diode Laser Absorption Spectroscopy. J. Mol. Spectrosc. 2008, 252, 101–107. [Google Scholar] [CrossRef]
- Raddaoui, E.; Troitsyna, L.; Dudaryonok, A.; Soulard, P.; Guinet, M.; Aroui, H.; Buldyreva, J.; Lavrentieva, N.; Jacquemart, D. Line Parameters Measurements and Modeling for the ν6 Band of CH3I: A Complete Line List for Atmospheric Databases. J. Quant. Spectrosc. Radiat. Transfer. 2019, 232, 165–179. [Google Scholar] [CrossRef]
- Attafi, Y.; Ben Hassen, A.; Aroui, H.; Kwabia Tchana, F.; Manceron, L.; Doizi, D.; Vander Auwera, J.; Perrin, A. Self and N2 Collisional Broadening of Rovibrational Lines in the ν6 Band of Methyl Iodide (12CH3I) at Room Temperature: The J and K Dependence. J. Quant. Spectrosc. Radiat. Transfer. 2019, 231, 1–8. [Google Scholar] [CrossRef]
- Belli, S.; Buffa, G.; Di Lieto, A.; Minguzzi, P.; Tarrini, O.; Tonelli, M. Hyperfine Level Dependence of the Pressure Broadening of CH3I Rotational Transitions in the ν6 = 1 Vibrational State. J. Mol. Spectrosc. 1980, 201, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Ben Fathallah, O.; Hmida, F.; Boughdiri, A.; Manceron, L.; Rotger, M.; Aroui, H. Line Intensities and Self-Broadening Coefficients of CH3I in the Region of ν5 and ν3+ν6 Bands. J. Quant. Spectrosc. Radiat. Transfer. 2021, 275, 107893. [Google Scholar] [CrossRef]
- Ben Fathallah, O.; Hammi, W.; Boughdiri, A.; Manceron, L.; Aroui, H. Measurements of Line Intensities and Self-Broadening Coefficients in the ν2 Band of CH3I. J. Quant. Spectrosc. Radiat. Transfer. 2021, 259, 107449. [Google Scholar] [CrossRef]
- Webster, C.R.; Menzies, R.T.; Hinkley, E.D. Infrared Laser Absorption: Theory and Applications. In Laser Remote Chemical Analysis; Measures, R.M., Ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 1988. [Google Scholar]
- Arndt, R. Analytical Line Shapes for Lorentzian Signals Broadened by Modulation. J. Appl. Phys. 1965, 36, 2522–2524. [Google Scholar] [CrossRef]
- Wahlquist, H. Modulation Broadening of Unsaturated Lorentzian Lines. J. Chem. Phys. B 1961, 35, 1708–1710. [Google Scholar] [CrossRef]



| (cm) | (Å) | (cm) | (Å) | (cm) | (Å) | (cm) | (Å) |
|---|---|---|---|---|---|---|---|
| 11,659.92 | 8574.08 | 11697.76 | 8546.35 | 11,720.95 | 8529.44 | 11,772.70 | 8491.94 |
| 11,660.13 | 8573.93 | 11,698.02 | 8546.16 | 11,730.12 | 8522.77 | 11,777.29 | 8488.63 |
| 11,664.91 | 8570.41 | 11,700.55 | 8544.31 | 11,730.34 | 8522.61 | 11,777.94 | 8488.17 |
| 11,665.03 | 8570.33 | 11,700.85 | 8544.09 | 11,730.43 | 8522.54 | 11,778.05 | 8488.09 |
| 11,667.27 | 8568.68 | 11,700.95 | 8544.02 | 11,730.62 | 8522.41 | 11,778.27 | 8487.93 |
| 11,683.78 | 8556.57 | 11,704.88 | 8541.15 | 11,738.96 | 8516.35 | 11,785.46 | 8482.75 |
| 11,683.92 | 8556.47 | 11,706.39 | 8540.04 | 11,739.46 | 8515.99 | 11,785.65 | 8482.61 |
| 11,684.03 | 8556.39 | 11,706.48 | 8539.98 | 11,739.58 | 8515.90 | 11,786.01 | 8482.35 |
| 11,684.18 | 8556.28 | 11,706.55 | 8539.94 | 11,739.69 | 8515.82 | 11,788.60 | 8480.49 |
| 11,684.43 | 8556.10 | 11,706.77 | 8539.77 | 11,739.80 | 8515.74 | 11,789.28 | 8480.00 |
| 11,684.58 | 8555.99 | 11,709.79 | 8537.57 | 11,741.14 | 8514.77 | 11,798.00 | 8473.73 |
| 11,684.74 | 8555.87 | 11,709.94 | 8537.46 | 11,741.39 | 8514.59 | 11,805.97 | 8468.01 |
| 11,684.95 | 8555.41 | 11,710.29 | 8537.20 | 11,748.32 | 8509.57 | 11,806.13 | 8467.90 |
| 11,686.83 | 8554.34 | 11,710.55 | 8537.01 | 11,761.04 | 8500.36 | 11,826.25 | 8453.49 |
| 11,687.14 | 8554.11 | 11,711.17 | 8536.56 | 11,761.75 | 8499.85 | 11,827.97 | 8452.26 |
| 11,687.44 | 8553.89 | 11,711.41 | 8536.38 | 11,767.15 | 8495.95 | 11,841.21 | 8442.81 |
| 11,687.72 | 8553.69 | 11,711.53 | 8536.30 | 11,767.29 | 8495.85 | 11,841.39 | 8442.68 |
| 11,694.13 | 8549.00 | 11,711.64 | 8536.22 | 11,767.42 | 8495.75 | 11,841.46 | 8442.63 |
| 11,694.39 | 8548.81 | 11,713.72 | 8534.70 | 11,768.03 | 8495.31 | 11,842.02 | 8442.23 |
| 11,694.67 | 8548.61 | 11,713.81 | 8534.64 | 11,768.13 | 8495.24 | ||
| 11,697.42 | 8546.59 | 11,720.67 | 8529.65 | 11,770.45 | 8493.57 |
| (cm) | (cm/atm) |
|---|---|
| 11,741.39 | |
| 11,778.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesini, A. Diode Laser Overtone Spectroscopy of Methyl Iodide at 850 nm. Spectrosc. J. 2023, 1, 28-36. https://doi.org/10.3390/spectroscj1010003
Lucchesini A. Diode Laser Overtone Spectroscopy of Methyl Iodide at 850 nm. Spectroscopy Journal. 2023; 1(1):28-36. https://doi.org/10.3390/spectroscj1010003
Chicago/Turabian StyleLucchesini, Alessandro. 2023. "Diode Laser Overtone Spectroscopy of Methyl Iodide at 850 nm" Spectroscopy Journal 1, no. 1: 28-36. https://doi.org/10.3390/spectroscj1010003
APA StyleLucchesini, A. (2023). Diode Laser Overtone Spectroscopy of Methyl Iodide at 850 nm. Spectroscopy Journal, 1(1), 28-36. https://doi.org/10.3390/spectroscj1010003

