Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, Cell Lines
2.2. Plant Collection
2.3. Preparation of Extracts
2.4. Maintenance of Cell Culture
2.5. Cytotoxicity Assay
2.6. Alpha-Amylase Inhibition
2.7. Alpha-Glucosidase Inhibition
2.8. Pancreatic Lipase Inhibition
2.9. Lipid Accumulation Assay
2.10. Glucose Utilization
2.11. Data Analysis
3. Results
3.1. Cytotoxicity
3.2. Alpha-Amylase Inhibition
3.3. Alpha-Glucosidase Inhibitory Assay
3.4. Porcine Pancreatic Lipase
3.5. Glucose Utilization in C3A Hepatocytes
3.6. Lipid Accumulation
3.7. Glucose Utilization in L6 Myocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qaisar, M.N.; Chaudhary, B.A.; Sajid, M.U.; Hussain, N. Evaluation of α-glucosidase inhibitory activity of dichloromethane and methanol extracts of Croton bonplandianum Baill. Trop. J. Pharm. Res. 2014, 10, 1833–1836. [Google Scholar] [CrossRef] [Green Version]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxid. Med. Cell. Longev. 2020, 2020, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keerthana, G.; Kalaivani, M.K.; Sumathy, A. In-vitro alpha amylase inhibitory and antioxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J. Pharm. Clin. Res. 2013, 6, 32–36. [Google Scholar]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-de-sa, M.F. Plant α-amylase inhibitors and their interaction with insect α-amylases structure, function, and potential for crop protection. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef]
- Notkins, A.L. Immunologic and genetic factors in Type1 Ficus deltoidea diabetes. J. Biol. Chem. 2002, 277, 43545–43548. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.D.; Duan, Y.Q.; Gao, J.M.; Ruan, Z.G. Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs. J. Chin. Med. Assoc. 2010, 1, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Sangeetha, R.; Vedasree, N. In vitro α-amylase Inhibitory activity of the leaves of Thespesia populnea. ISRN Pharmacol. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Balan, K.; Ratha, P.; Prakash, G.; Viswanathamurthi, P.; Adisakwattana, S.; Palvannan, T. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potential of N2O2 Schiff base Zn complex. Arab. J. Chem. 2017, 10, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.S. The epidemic of obesity and diabetes: Trends and treatments. Tex. Heart Inst. J. 2011, 38, 142. [Google Scholar]
- Seyedan, A.; Alshawsh, M.A.; Alshagga, M.A.; Koosha, S.; Mohamed, Z. Medicinal plants, and their inhibitory activities against pancreatic lipase: A review. Evid. Based Complement. Alternat. Med. 2015, 10, 2015. [Google Scholar] [CrossRef] [Green Version]
- Pontarolo, R.; Sanches, A.C.C.; Wiens, A.; Perlin, C.M.; Tonin, F.S.; Borba, H.H.L.; Lenzi, L.; da Silva Penteado, S.T. Pharmacological Treatments for Type 2 Diabetes. Treat. Type 2 Diabetes. 2015, 147–184. [Google Scholar] [CrossRef] [Green Version]
- Eddouks, M.; Chattopadhyay, D.; De Feo, V.; Cho, W.C.S. Medicinal plants in the prevention and treatment of chronic diseases 2013. Evid. Based Complement. Alternat. Med. 2014, 2014, 180981. [Google Scholar] [CrossRef] [PubMed]
- Jamila, F.; Mostafa, E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
- Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed. 2012, 2, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.F.; Rawat, A.K.; Khatoon, S.; Hussain, M.K.; Mishra, A.; Negi, D.S. In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integr. Med. Res. 2018, 7, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Chipiti, T.; Ibrahim, M.A.; Singh, M.; Islam, M.S. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts. Pharmacogn. Mag. 2015, 11, 231. [Google Scholar]
- Erasto, P.; Adebola, P.; Grierson, D.; Afolayan, A.J. An ethnobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. Afr. J. Biotechnol. 2005, 4, 1458–1460. [Google Scholar]
- Afolayan, A.J.; Sunmonu, T.O. In vivo Studies on Antidiabetic Plants used in South African Herbal Medicine. J. Clin. Biochem Nutr. 2010, 47, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Odeyemi, S.; Bradley, G. Medicinal plants used for the traditional management of diabetes in the Eastern Cape, South Africa: Pharmacology and toxicology. Molecules 2018, 23, 2759. [Google Scholar] [CrossRef] [Green Version]
- Maroyi, A. Heteromorpha arborescens: A review of its botany, medicinal uses, and pharmacological properties. Asian J. Pharm. Clin. Res. 2018, 11, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Lotter, M.; McCleland, W. Trees and Shrubs of Mpumalanga and Kruger National Park; Jacana Media: Pretoria, South Africa, 2002. [Google Scholar]
- Van Wyk, B.E.; Gericke, N. People’s Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2007. [Google Scholar]
- Stangeland, T.; Alele, P.E.; Katuura, E.; Lye, K.A. Plants used to treat malaria in Nyakayojo sub-county, Western Uganda. J. Ethnopharmacol. 2011, 137, 154–166. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza Publications: Pretoria, South Africa, 2013. [Google Scholar]
- Nkomo, M.; Nkeh-Chungag, B.N.; Kambizi, L.; Ndebia, E.J.; Sewani-Rusike, C.; Iputo, J.E. Investigation of the antinociceptive and anti-inflammatory properties of Heteromorpha arborescens (Apiaceae). Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, M.; Kambizi, L. Antimicrobial activity of Gunnera perpensa and Heteromorpha arborescens var. abyssinica. J. Med. Plant. Res. 2009, 3, 1051–1055. [Google Scholar]
- Odeyemi, S.; Dewar, J. In vitro Antidiabetic activity affecting glucose uptake in HepG2 cells following their exposure to extracts of Lauridia tetragona (Lf) RH Archer. Processes 2020, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Bustanji, Y.; Issa, A.; Mohammad, M.; Hudaib, M.; Tawah, K.; Alkhatib, H.; Almasri, I.; Al-Khalid, B. Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J. Med. Plant. Res. 2010, 4, 2235–2242. [Google Scholar]
- Sagbo, I.J.; van de Venter, M.; Koekemoer, T.; Bradley, G. In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid. Based Complementary Altern. Med. 2018, 2018, 4170372. [Google Scholar] [CrossRef]
- Van de Venter, M.; Roux, S.; Bungu, L.C.; Louw, J.; Crouch, N.R.; Grace, O.M.; Maharaj, V.; Pillay, P.; Sewnarian, P.; Bhagwandin, N. Antidiabetic screening and scoring of 11 plants traditionally. J. Ethnopharmacol. 2008, 119, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.J. Diabetes treatment, part 2: Oral agents for glycemic management. Clin. Diabetes. 2007, 25, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.) Cogn. Heliyon. 2018, 4, 810. [Google Scholar] [CrossRef] [Green Version]
- Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Cytotoxicity evaluation and anti-inflammatory potentials of Cucumis africanus L.f. leaves. Med. Plants Int. J. Phytomed. Relat. Ind. 2020, 12, 48–52. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jeong, Y.K.; Wang, M.H.; Lee, W.Y.; Rhee, H.I. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005, 21, 756–761. [Google Scholar] [CrossRef]
- Bhandari, M.R.; Anurakkun, N.J.; Hong, G.; Kawabata, J. α-glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergeniaciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
- Deshpande, M.C.; Venkateswarlu, V.; Babu, R.K.; Trivedi, R.K. Design and evaluation of oral bio adhesive controlled release formulations of miglitol, intended for prolonged inhibition of intestinal α-glucosidases and enhancement of plasma glucagon like peptide-1 levels. Int. J. Pharm. 2009, 380, 16–24. [Google Scholar] [CrossRef]
- Mohammed, E.A.H.; Siddiqui, M.J.A.; Ang, L.F.; Sadikun, A.; Chan, S.H.; Tan, S.C. Potent α-glucosidase, and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement. Altern Med. 2012, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Chemical Composition of Essential Oils Obtained from Heteromorpha arborescens (Spreng.) Cham. and Schltdl Leaves Using Two Extraction Methods. Sci. World J. 2020, 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sebai, H.; Selmi, S.; Rtibi, K.; Souli, A.; Gharbi, N.; Sakly, M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis. 2013, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, F.A.; Usman, L.A.; Akolade, J.O.; Idowu, O.A.; Abdulazeez, A.T.; Amuzat, A.O. Antidiabetic potentials of Citrus aurantifolia leaf essential oil. Drug Res. 2019, 69, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria, J.K.M.; Rajesh, J.; Mandal, A.K.A.; Sampath, N. Antioxidant and antimicrobial activity of individual catechin molecules: A comparative study between gallated and epimerized catechin molecules. Eur. J. Exp. Biol. 2011, 3, 145–153. [Google Scholar]
- Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Assessment of the phytochemical, antioxidant, and antibacterial activities of Heteromorpha arborescens (Spreng.) Cham & Schltdl. leaf extracts. F1000Research 2020, 9, 1079. [Google Scholar] [PubMed]
- Abdallah, H.M.; Salama, M.M.; Abd-elrahman, E.H.; El-Maraghy, S.A. Antidiabetic activity of phenolic compounds from pecan bark in streptozotocin-induced diabetic rats. Phytochem. Lett. 2011, 4, 337–341. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional Ethno veterinary use in the Mediterranean area. Pharm Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Mwakalukwa, R.; Amen, Y.; Nagata, M.; Shimizu, K. Postprandial Hyperglycemia Lowering Effect of the Isolated Compounds from Olive Mill Wastes–An Inhibitory Activity and Kinetics Studies on α-Glucosidase and α-Amylase Enzymes. ACS Omega 2020, 5, 20070–20079. [Google Scholar] [CrossRef]
- Cho, M.; Han, J.H.; You, S. Inhibitory effects of fucan sulfates on enzymatic hydrolysis of starch. LWT Food Sci. Technol. 2011, 44, 1164–1171. [Google Scholar] [CrossRef]
- Ohikhena, F.U.; Wintola, O.A.; Afolayan, A.J. Investigating the antidiabetic potential of Phragmanthera capitata, mistletoe harvested from rubber tree. J Herbs Spices Med. Plants. 2017, 24, 151–159. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Inhibition of key enzymes linked to obesity and cytotoxic activities of whole plant extracts of Vernonia mesplilfolia Less. Processes 2019, 7, 841. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.I.; Apostolidis, E.; Kim, Y.C.; Shetty, K. Health benefits of traditional corn, beans, and pumpkin: In vitro studies for hyperglycemia and hypertension management. J. Med. Food 2007, 1, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Kumar, V.; Van Staden, J. In vitro α-glucosidase inhibitory, total phenolic composition, antiradical, and antioxidant potential of Heteromorpha arborescens (Spreng.) Cham. & Schltdl. leaf and bark extracts. S. Afr. J. Bot. 2019, 124, 380–386. [Google Scholar]
- Gayathri, V.; Lekshmi, P.; Padmanabhan, R.N. Anti-diabetes activity of ethanol extract of Centella asiatica (L.) Urban (whole plant) in Streptozotocin-induced diabetic rats, isolation of an active fraction and toxicity evaluation of the extract. Int. J. Med. Aromat. Plants. 2011, 3, 278–286. [Google Scholar]
- Yaser, A.J.; Muneer, A.; Abdelhafid, B.; Dauodi, C.S.; Hammadi, L. Chemical and phytochemical analysis of some antidiabetic plants in Yemen. Int J. Res. Pharm. 2013, 4, 72–76. [Google Scholar] [CrossRef]
- Shobha, R.I.; Rajeshwari, C.U.; Andallu, B. Anti-peroxidative and antidiabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds. Am. J. Phytomed. Clin. Ther. 2013, 5, 516–527. [Google Scholar]
- Farzaneh, V.; Gominho, J.; Pereira, H.; Carvalho, I.S. Screening of the antioxidant and enzyme inhibition potentials of Portuguese Pimpinella anisum L. seeds by GC-MS. Food Anal. Methods 2018, 11, 2645–2656. [Google Scholar] [CrossRef]
- Lee, H.S. Cuminaldehyde: Aldose Reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. seeds. J. Agric. Food Chem. 2005, 53, 2446–2453. [Google Scholar] [CrossRef] [PubMed]
- Ardeshirlarijani, E.; Namazi, N.B.; Jalili, R.; Saeedi, M.; Imanparast, S.; Adhami, H.R.; Faramarzi, M.A.; Ayati, M.H.; Mahdavi, M.; Larijani, B. Potential Anti-obesity effects of some medicinal herb: In vitro α-amylase, α-glucosidase and lipase Inhibitory Activity. Int. J. Adv. Biol. Biomed. Res. 2019, 5, 2. [Google Scholar]
- Olaokun, O.O.; Mkolo, N.M.; Mogale, M.A.; King, P.H. Phytochemical Screening, Antioxidant, Anti-inflammatory and Glucose Utilization Activities of Three South African Plants Used Traditionally to Treat Diseases. Biol Med. (Aligarh). 2017, 9, 2. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maiti, K.; Mukherjee, K.; Houghton, P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 2006, 15, 1–28. [Google Scholar] [CrossRef]
- Van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and Lipotoxicity. Physiol. Behav. 2008, 23, 231–241. [Google Scholar] [CrossRef]
- Dechakhamphu, A.; Wongchum, N. Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pac. J. Trop. Biomed. 2015, 5, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
Extracts | α-Amylase | α-Glucosidase | Lipase |
---|---|---|---|
Ethanol | 724.66 ± 4.33 | 627.29 ± 4.62 | 699.3 ± 1.33 |
Blanched | 791.63 ± 3.76 | 855.38 ± 4.29 | 1152.7 ± 4.61 |
Aqueous | 583.74 ± 5.87 | 576.46 ± 3.21 | 811.52 ± 3.52 |
Acarbose | 51.06 ± 1.78 | 45.43 ± 2.31 | * |
Orlistat | * | * | 56.88 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abifarin, T.O.; Otunola, G.A.; Afolayan, A.J. Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves. Processes 2021, 9, 1671. https://doi.org/10.3390/pr9091671
Abifarin TO, Otunola GA, Afolayan AJ. Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves. Processes. 2021; 9(9):1671. https://doi.org/10.3390/pr9091671
Chicago/Turabian StyleAbifarin, Taiwo Oluwafunmilola, Gloria Aderonke Otunola, and Anthony Jide Afolayan. 2021. "Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves" Processes 9, no. 9: 1671. https://doi.org/10.3390/pr9091671
APA StyleAbifarin, T. O., Otunola, G. A., & Afolayan, A. J. (2021). Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves. Processes, 9(9), 1671. https://doi.org/10.3390/pr9091671