MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer
Abstract
1. Introduction
2. miRNAs in Kidney Cancer
3. miRNAs in Upper Tract Urothelial Carcinoma
4. miRNAs in Urinary Bladder Cancer
5. Drug Targets and miRNA-Based Therapeutic Strategies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, P.; Znaor, A.; Holcatova, I.; Fabianova, E.; Mates, D.; Wozniak, M.B.; Ferlay, J.; Scelo, G. Regional Geographic Variations in Kidney Cancer Incidence Rates in European Countries. Eur. Urol. 2015, 67, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Campbell, S.C.; Choi, H.Y.; Cho, H.Y.; Jacqmin, D.; Lee, J.E.; Weikert, S.; Kiemeney, L.A. The Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2011, 60, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Turajlic, S.; Swanton, C.; Boshoff, C. Kidney Cancer: The next Decade. J. Exp. Med. 2018, 215, 2477–2479. [Google Scholar] [CrossRef]
- Gupta, K.; Miller, J.D.; Li, J.Z.; Russell, M.W.; Charbonneau, C. Epidemiologic and Socioeconomic Burden of Metastatic Renal Cell Carcinoma (MRCC): A Literature Review. Cancer Treat. Rev. 2008, 34, 193–205. [Google Scholar] [CrossRef]
- Hall, M.C.; Chang, S.S.; Dalbagni, G.; Pruthi, R.S.; Seigne, J.D.; Skinner, E.C.; Wolf, J.S.; Schellhammer, P.F. Guideline for the Management of Nonmuscle Invasive Bladder Cancer (Stages Ta, T1, and Tis): 2007 Update. J. Urol. 2007, 178, 2314–2330. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Soliman, A.M.; Das, S.; Abd Ghafar, N.; Teoh, S.L. Role of MicroRNA in Proliferation Phase of Wound Healing. Front. Genet. 2018, 9, 38. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer 2018, 18, 5. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Lin, T.S.; Mahakkanukrauh, P.; Das, S. Role of MicroRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 7539. [Google Scholar] [CrossRef]
- Soliman, A.M.; Das, S.; Teoh, S.L. Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int. J. Mol. Sci. 2021, 22, 7470. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.-B.; He, Y.-F.; Li, X.-Q.; Wang, K.; Wang, R.-L. The Role of MiRNA and LncRNA in Gastric Cancer. Oncotarget 2017, 8, 81572. [Google Scholar] [CrossRef]
- de Abreu, F.B.; Liu, X.; Tsongalis, G.J. MiRNA Analysis in Pancreatic Cancer: The Dartmouth Experience. Clin. Chem. Lab. Med. 2017, 55, 755–762. [Google Scholar] [CrossRef]
- Balacescu, O.; Sur, D.; Cainap, C.; Visan, S.; Cruceriu, D.; Manzat-Saplacan, R.; Muresan, M.-S.; Balacescu, L.; Lisencu, C.; Irimie, A. The Impact of MiRNA in Colorectal Cancer Progression and Its Liver Metastases. Int. J. Mol. Sci. 2018, 19, 3711. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, B.; Kirave, P.; Gondaliya, P.; Jash, K.; Jain, A.; Tekade, R.K.; Kalia, K. Exosomal MiRNA in Chemoresistance, Immune Evasion, Metastasis and Progression of Cancer. Drug Discov. Today 2019, 24, 2058–2067. [Google Scholar] [CrossRef]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef]
- Xu, L.; Yang, B.-F.; Ai, J. MicroRNA Transport: A New Way in Cell Communication. J. Cell Physiol. 2013, 228, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of MicroRNAs and MicroRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Jaiswal, R.; Mathys, J.M.; Combes, V.; Grau, G.E.R.; Bebawy, M. Microparticles and Their Emerging Role in Cancer Multidrug Resistance. Cancer Treat. Rev. 2012, 38, 226–234. [Google Scholar] [CrossRef]
- Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front. Genet. 2019, 10, 626. [Google Scholar] [CrossRef]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in Cancer: Biomarkers, Functions and Therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Nakada, C.; Matsuura, K.; Tsukamoto, Y.; Tanigawa, M.; Yoshimoto, T.; Narimatsu, T.; Nguyen, L.T.; Hijiya, N.; Uchida, T.; Sato, F.; et al. Genome-Wide MicroRNA Expression Profiling in Renal Cell Carcinoma: Significant down-Regulation of MiR-141 and MiR-200c. J. Pathol. 2008, 216, 418–427. [Google Scholar] [CrossRef]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The MiR-200 Family Determines the Epithelial Phenotype of Cancer Cells by Targeting the E-Cadherin Repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef]
- Yun, S.J.; Kim, W.-J. Role of the Epithelial-Mesenchymal Transition in Bladder Cancer: From Prognosis to Therapeutic Target. Korean J. Urol. 2013, 54, 645–650. [Google Scholar] [CrossRef]
- Dutta, K.K.; Zhong, Y.; Liu, Y.-T.; Yamada, T.; Akatsuka, S.; Hu, Q.; Yoshihara, M.; Ohara, H.; Takehashi, M.; Shinohara, T.; et al. Association of MicroRNA-34a Overexpression with Proliferation Is Cell Type-Dependent. Cancer Sci. 2007, 98, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Juan, D.; Alexe, G.; Antes, T.; Liu, H.; Madabhushi, A.; Delisi, C.; Ganesan, S.; Bhanot, G.; Liou, L.S. Identification of a MicroRNA Panel for Clear-Cell Kidney Cancer. Urology 2010, 75, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, Y.; Yang, J.; Chen, T.; Yin, Y.; Tang, M.; Hu, C.; Zhang, L. Microarray Analysis of MicroRNA Expression in Renal Clear Cell Carcinoma. Eur. J. Surg. Oncol. 2009, 35, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Petillo, D.; Kort, E.J.; Anema, J.; Furge, K.A.; Yang, X.J.; Teh, B.T. MicroRNA Profiling of Human Kidney Cancer Subtypes. Int. J. Oncol. 2009, 35, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Hu, X.-Y.; Li, Y.-H.; Tian, B.-Q.; Li, Z.-W.; Fu, Q. MicroRNA-21 Regulates the Proliferation, Differentiation, and Apoptosis of Human Renal Cell Carcinoma Cells by the MTOR-STAT3 Signaling Pathway. Oncol. Res. 2016, 24, 371–380. [Google Scholar] [CrossRef]
- Toraih, E.A.; Ibrahiem, A.T.; Fawzy, M.S.; Hussein, M.H.; Al-Qahtani, S.A.M.; Shaalan, A.A.M. MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. Oxidative Med. Cell Longev. 2017, 2017, 3269379. [Google Scholar] [CrossRef]
- Wu, D.; Niu, X.; Pan, H.; Zhou, Y.; Zhang, Z.; Qu, P.; Zhou, J. Tumor-suppressing Effects of MicroRNA-429 in Human Renal Cell Carcinoma via the Downregulation of Sp1. Oncol. Lett. 2016, 12, 2906–2911. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Chang, D.W.; Lin, S.-H.; Huang, M.; Tannir, N.M.; Matin, S.; Karam, J.A.; Wood, C.G.; Chen, Z.-N.; et al. Global and Targeted MiRNA Expression Profiling in Clear Cell Renal Cell Carcinoma Tissues Potentially Links MiR-155-5p and MiR-210-3p to Both Tumorigenesis and Recurrence. Am. J. Pathol. 2018, 188, 2487–2496. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Su, Z.; Li, Y.; Liu, J.; Jin, L.; Shi, M.; Jiang, Z.; Qi, Z.; Gui, Y.; et al. MicroRNA-106b Functions as an Oncogene in Renal Cell Carcinoma by Affecting Cell Proliferation, Migration and Apoptosis. Mol. Med. Rep. 2016, 13, 1420–1426. [Google Scholar] [CrossRef][Green Version]
- Xiao, H.; Xiao, W.; Cao, J.; Li, H.; Guan, W.; Guo, X.; Chen, K.; Zheng, T.; Ye, Z.; Wang, J.; et al. MiR-206 Functions as a Novel Cell Cycle Regulator and Tumor Suppressor in Clear-Cell Renal Cell Carcinoma. Cancer Lett. 2016, 374, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Huang, J.; Xiao, H.; Liang, Z. MicroRNA-22 Is Downregulated in Clear Cell Renal Cell Carcinoma, and Inhibits Cell Growth, Migration and Invasion by Targeting PTEN. Mol. Med. Rep. 2016, 13, 4800–4806. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Zhang, Z.; Feng, Z.; Wei, J.; Lu, J.; Fang, Y.; Liang, Y.; Cen, J.; Pan, Y.; et al. The Putative Tumor Suppressor MicroRNA-30a-5p Modulates Clear Cell Renal Cell Carcinoma Aggressiveness through Repression of ZEB2. Cell Death Dis. 2017, 8, e2859. [Google Scholar] [CrossRef]
- Szabó, Z.; Szegedi, K.; Gombos, K.; Mahua, C.; Flaskó, T.; Harda, K.; Halmos, G. Expression of MiRNA-21 and MiRNA-221 in Clear Cell Renal Cell Carcinoma (CcRCC) and Their Possible Role in the Development of CcRCC. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 533.e21–533.e27. [Google Scholar] [CrossRef]
- Wang, W.; Hu, W.; Wang, Y.; Yang, J.; Yue, Z. MicroRNA-508 Is Downregulated in Clear Cell Renal Cell Carcinoma and Targets ZEB1 to Suppress Cell Proliferation and Invasion. Exp. Ther. Med. 2019, 17, 3814–3822. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wu, K.; Du, F.; Yin, X.; Guan, H. MiR-384 Suppressed Renal Cell Carcinoma Cell Proliferation and Migration through Targeting RAB23. J. Cell Bioch. 2019, 120, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qi, L.; Zhang, K.; Wang, F. MicroRNA-10a Suppresses Cell Metastasis by Targeting BDNF and Predicted Patients Survival in Renal Cell Carcinoma. J. BUON 2021, 26, 250–258. [Google Scholar] [PubMed]
- Arai, T.; Okato, A.; Kojima, S.; Idichi, T.; Koshizuka, K.; Kurozumi, A.; Kato, M.; Yamazaki, K.; Ishida, Y.; Naya, Y.; et al. Regulation of Spindle and Kinetochore-Associated Protein 1 by Antitumor MiR-10a-5p in Renal Cell Carcinoma. Cancer Sci. 2017, 108, 2088–2101. [Google Scholar] [CrossRef]
- Yamada, Y.; Arai, T.; Kato, M.; Kojima, S.; Sakamoto, S.; Komiya, A.; Naya, Y.; Ichikawa, T.; Seki, N. Role of Pre-MiR-532 (MiR-532-5p and MiR-532-3p) in Regulation of Gene Expression and Molecular Pathogenesis in Renal Cell Carcinoma. Am. J. Clin. Exp. Urol. 2019, 7, 11–30. [Google Scholar]
- Yamada, Y.; Nohata, N.; Uchida, A.; Kato, M.; Arai, T.; Moriya, S.; Mizuno, K.; Kojima, S.; Yamazaki, K.; Naya, Y.; et al. Replisome Genes Regulation by Antitumor MiR-101-5p in Clear Cell Renal Cell Carcinoma. Cancer Sci. 2020, 111, 1392–1406. [Google Scholar] [CrossRef]
- Okato, A.; Arai, T.; Yamada, Y.; Sugawara, S.; Koshizuka, K.; Fujimura, L.; Kurozumi, A.; Kato, M.; Kojima, S.; Naya, Y.; et al. Dual Strands of Pre-MiR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma. Int. J. Mol. Sci. 2017, 18, 1969. [Google Scholar] [CrossRef]
- Niu, S.; Ma, X.; Zhang, Y.; Liu, Y.-N.; Chen, X.; Gong, H.; Yao, Y.; Liu, K.; Zhang, X. MicroRNA-19a and MicroRNA-19b Promote the Malignancy of Clear Cell Renal Cell Carcinoma through Targeting the Tumor Suppressor RhoB. PLoS ONE 2018, 13, e0192790. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Arai, T.; Sugawara, S.; Okato, A.; Kato, M.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Impact of Novel Oncogenic Pathways Regulated by Antitumor MiR-451a in Renal Cell Carcinoma. Cancer Sci. 2018, 109, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Sun, X.; Chen, J.; Sun, X.; Zheng, J.; Chen, R. MicroRNA-27a Functions as a Tumor Suppressor in Renal Cell Carcinoma by Targeting Epidermal Growth Factor Receptor. Oncol. Lett. 2016, 11, 4217–4223. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Jin, L.; Liu, J.; Su, Z.; Li, Y.; Gui, Y.; Lai, Y. MicroRNA-20b-5p Functions as a Tumor Suppressor in Renal Cell Carcinoma by Regulating Cellular Proliferation, Migration and Apoptosis. Mol. Med. Rep. 2016, 13, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.-Y.; Xu, Z.-H.; Chen, Y.-L.; Lu, Z.-Y.; Shen, D.-Y.; Lu, J.-Y.; Zheng, Q.-M.; Wang, L.-Y.; Xu, L.-W.; et al. The Prognostic Value of MiRNA-18a-5p in Clear Cell Renal Cell Carcinoma and Its Function via the MiRNA-18a-5p/HIF1A/PVT1 Pathway. J. Cancer 2020, 11, 2737–2748. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Wei, L.-L.; Wu, X.-J.; Huo, F.-C.; Mou, J.; Pei, D.-S. MiR-106a-5p Inhibits the Cell Migration and Invasion of Renal Cell Carcinoma through Targeting PAK5. Cell Death Dis. 2017, 8, e3155. [Google Scholar] [CrossRef]
- Yang, F.; Ma, J.; Tang, Q.; Zhang, W.; Fu, Q.; Sun, J.; Wang, H.; Song, B. MicroRNA-543 Promotes the Proliferation and Invasion of Clear Cell Renal Cell Carcinoma Cells by Targeting Krüppel-like Factor 6. Biomed. Pharm. 2018, 97, 616–623. [Google Scholar] [CrossRef]
- Gilyazova, I.R.; Klimentova, E.A.; Bulygin, K.V.; Izmailov, A.A.; Bermisheva, M.A.; Galimova, E.F.; Safiullin, R.I.; Galimov, S.N.; Pavlov, V.N.; Khusnutdinova, E.K. MicroRNA-200 Family Expression Analysis in Metastatic Clear Cell Renal Cell Carcinoma Patients. Cancer Gene Ther. 2020, 27, 768–772. [Google Scholar] [CrossRef]
- Fu, H.; Song, W.; Chen, X.; Guo, T.; Duan, B.; Wang, X.; Tang, Y.; Huang, L.; Zhang, C. MiRNA-200a Induce Cell Apoptosis in Renal Cell Carcinoma by Directly Targeting SIRT1. Mol. Cell Biochem. 2018, 437, 143–152. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, F.; Song, H.; Li, X.; Xian, J.; Gu, X. MicroRNA-200a-3p Suppresses Tumor Proliferation and Induces Apoptosis by Targeting SPAG9 in Renal Cell Carcinoma. Biochem. Biophys. Res. Commun. 2016, 470, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, C.; Zhang, Y.; Zheng, Y.; Ma, F.; Su, L.; Shao, G. MicroRNA-30e-3p Inhibits Cell Invasion and Migration in Clear Cell Renal Cell Carcinoma by Targeting Snail1. Oncol. Lett. 2017, 13, 2053–2058. [Google Scholar] [CrossRef]
- Goto, Y.; Kurozumi, A.; Nohata, N.; Kojima, S.; Matsushita, R.; Yoshino, H.; Yamazaki, K.; Ishida, Y.; Ichikawa, T.; Naya, Y.; et al. The MicroRNA Signature of Patients with Sunitinib Failure: Regulation of UHRF1 Pathways by MicroRNA-101 in Renal Cell Carcinoma. Oncotarget 2016, 7, 59070–59086. [Google Scholar] [CrossRef] [PubMed]
- Würdinger, T.; Tannous, B.A.; Saydam, O.; Skog, J.; Grau, S.; Soutschek, J.; Weissleder, R.; Breakefield, X.O.; Krichevsky, A.M. MiR-296 Regulates Growth Factor Receptor Overexpression in Angiogenic Endothelial Cells. Cancer Cell 2008, 14, 382–393. [Google Scholar] [CrossRef]
- Sinha, S.; Dutta, S.; Datta, K.; Ghosh, A.K.; Mukhopadhyay, D. Von Hippel-Lindau Gene Product Modulates TIS11B Expression in Renal Cell Carcinoma: Impact on Vascular Endothelial Growth Factor Expression in Hypoxia. J. Biol. Chem. 2009, 284, 32610–32618. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.S.; Michael, M.Z.; Rawlings, L.H.; Van der Hoek, M.B.; Gleadle, J.M. The VHL-Dependent Regulation of MicroRNAs in Renal Cancer. BMC Med. 2010, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Zhang, Y.-Y.; Hemann, C.; Mahoney, C.E.; Zweier, J.L.; Loscalzo, J. MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metab. 2009, 10, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zabirnyk, O.; Wang, H.; Shiao, Y.-H.; Nickerson, M.L.; Khalil, S.; Anderson, L.M.; Perantoni, A.O.; Phang, J.M. MiR-23b Targets Proline Oxidase, a Novel Tumor Suppressor Protein in Renal Cancer. Oncogene 2010, 29, 4914–4924. [Google Scholar] [CrossRef]
- Jiang, Z.; Chu, P.G.; Woda, B.A.; Liu, Q.; Balaji, K.C.; Rock, K.L.; Wu, C.-L. Combination of Quantitative IMP3 and Tumor Stage: A New System to Predict Metastasis for Patients with Localized Renal Cell Carcinomas. Clin. Cancer Res. 2008, 14, 5579–5584. [Google Scholar] [CrossRef]
- Kassouf, W.; Monteiro, L.L.; Drachenberg, D.E.; Fairey, A.S.; Finelli, A.; Kapoor, A.; Lattouf, J.-B.; Leveridge, M.J.; Power, N.E.; Pouliot, F.; et al. Canadian Urological Association Guideline for Followup of Patients after Treatment of Non-Metastatic Renal Cell Carcinoma. Can. Urol. Assoc. J. 2018, 12, 231–238. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Oldenhuis, C.N.A.M.; Oosting, S.F.; Gietema, J.A.; de Vries, E.G.E. Prognostic versus Predictive Value of Biomarkers in Oncology. Eur. J. Cancer 2008, 44, 946–953. [Google Scholar] [CrossRef]
- Cannistra, S.A. When Is a “Prognostic Factor” Really Prognostic? J. Clin. Oncol. 2000, 18, 3745–3747. [Google Scholar] [CrossRef]
- Li, H.; Samawi, H.; Heng, D.Y.C. The Use of Prognostic Factors in Metastatic Renal Cell Carcinoma. Urol. Oncol. 2015, 33, 509–516. [Google Scholar] [CrossRef]
- Motzer, R.J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. Survival and Prognostic Stratification of 670 Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 1999, 17, 2530–2540. [Google Scholar] [CrossRef]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal Cell Carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef]
- Zisman, A.; Pantuck, A.J.; Figlin, R.A.; Belldegrun, A.S. Validation of the Ucla Integrated Staging System for Patients with Renal Cell Carcinoma. J. Clin. Oncol. 2001, 19, 3792–3793. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Dias, F.; Ferreira, M.; Gomes, M.; Santos, J.I.; Lobo, F.; Maurício, J.; Machado, J.C.; Medeiros, R. Combined Influence of EGF+61G>A and TGFB+869T>C Functional Polymorphisms in Renal Cell Carcinoma Progression and Overall Survival: The Link to Plasma Circulating MiR-7 and MiR-221/222 Expression. PLoS ONE 2015, 10, e0103258. [Google Scholar] [CrossRef]
- Malouf, G.G.; Su, X.; Yao, H.; Gao, J.; Xiong, L.; He, Q.; Compérat, E.; Couturier, J.; Molinié, V.; Escudier, B.; et al. Next-Generation Sequencing of Translocation Renal Cell Carcinoma Reveals Novel RNA Splicing Partners and Frequent Mutations of Chromatin-Remodeling Genes. Clin. Cancer Res. 2014, 20, 4129–4140. [Google Scholar] [CrossRef] [PubMed]
- Dimitrieva, S.; Schlapbach, R.; Rehrauer, H. Prognostic Value of Cross-Omics Screening for Kidney Clear Cell Renal Cancer Survival. Biol. Direct 2016, 11, 68. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating MicroRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating MicroRNA in Body Fluid: A New Potential Biomarker for Cancer Diagnosis and Prognosis. Cancer Sci. 2010, 101, 2087–2092. [Google Scholar] [CrossRef]
- Du, M.; Giridhar, K.V.; Tian, Y.; Tschannen, M.R.; Zhu, J.; Huang, C.-C.; Kilari, D.; Kohli, M.; Wang, L. Plasma Exosomal MiRNAs-Based Prognosis in Metastatic Kidney Cancer. Oncotarget 2017, 8, 63703–63714. [Google Scholar] [CrossRef]
- Lou, N.; Ruan, A.-M.; Qiu, B.; Bao, L.; Xu, Y.-C.; Zhao, Y.; Sun, R.-L.; Zhang, S.-T.; Xu, G.-H.; Ruan, H.-L.; et al. MiR-144-3p as a Novel Plasma Diagnostic Biomarker for Clear Cell Renal Cell Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 36.e7–36.e14. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Chen, C.; Wu, Z.; Bai, P.; Li, S.; Chen, B.; Liu, R.; Zhang, K.; Li, W.; et al. Serum Exosomal MiR-210 as a Potential Biomarker for Clear Cell Renal Cell Carcinoma. J. Cell BioChem 2019, 120, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Ferreira, M.; Silva, J.; Gomes, M.; Dias, F.; Santos, J.I.; Maurício, J.; Lobo, F.; Medeiros, R. Higher Circulating Expression Levels of MiR-221 Associated with Poor Overall Survival in Renal Cell Carcinoma Patients. Tumour Biol. 2014, 35, 4057–4066. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, F.G.; Tolkach, Y.; Deng, M.; Schmidt, D.; Perner, S.; Kristiansen, G.; Müller, S.C.; Ellinger, J. Serum MiR-122-5p and MiR-206 Expression: Non-Invasive Prognostic Biomarkers for Renal Cell Carcinoma. Clin. Epigenetics 2018, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ni, M.; Su, Y.; Wang, H.; Zhu, S.; Zhao, A.; Li, G. MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-Cell Renal Cell Carcinoma. Eur. Urol. Focus 2018, 4, 412–419. [Google Scholar] [CrossRef]
- Song, S.; Long, M.; Yu, G.; Cheng, Y.; Yang, Q.; Liu, J.; Wang, Y.; Sheng, J.; Wang, L.; Wang, Z.; et al. Urinary Exosome MiR-30c-5p as a Biomarker of Clear Cell Renal Cell Carcinoma That Inhibits Progression by Targeting HSPA5. J. Cell Mol. Med. 2019, 23, 6755–6765. [Google Scholar] [CrossRef]
- Fedorko, M.; Juracek, J.; Stanik, M.; Svoboda, M.; Poprach, A.; Buchler, T.; Pacik, D.; Dolezel, J.; Slaby, O. Detection of Let-7 MiRNAs in Urine Supernatant as Potential Diagnostic Approach in Non-Metastatic Clear-Cell Renal Cell Carcinoma. Biochem. Med. 2017, 27, 411–417. [Google Scholar] [CrossRef]
- Exosomal MicroRNAs Are Diagnostic Biomarkers and Can Mediate Cell–Cell Communication in Renal Cell Carcinoma. Eur. Urol. Focus 2016, 2, 210–218. [CrossRef]
- Li, G.; Zhao, A.; Péoch, M.; Cottier, M.; Mottet, N. Detection of Urinary Cell-Free MiR-210 as a Potential Tool of Liquid Biopsy for Clear Cell Renal Cell Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 294–299. [Google Scholar] [CrossRef]
- Rouprêt, M.; Babjuk, M.; Compérat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Gontero, P.; Van Rhijn, B.W.G.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur. Urol. 2018, 73, 111–122. [Google Scholar] [CrossRef]
- Seisen, T.; Peyronnet, B.; Dominguez-Escrig, J.L.; Bruins, H.M.; Yuan, C.Y.; Babjuk, M.; Böhle, A.; Burger, M.; Compérat, E.M.; Cowan, N.C.; et al. Oncologic Outcomes of Kidney-Sparing Surgery Versus Radical Nephroureterectomy for Upper Tract Urothelial Carcinoma: A Systematic Review by the EAU Non-Muscle Invasive Bladder Cancer Guidelines Panel. Eur. Urol. 2016, 70, 1052–1068. [Google Scholar] [CrossRef] [PubMed]
- Browne, B.M.; Stensland, K.D.; Moynihan, M.J.; Canes, D. An Analysis of Staging and Treatment Trends for Upper Tract Urothelial Carcinoma in the National Cancer Database. Clin. Genitourin Cancer 2018, 16, e743–e750. [Google Scholar] [CrossRef] [PubMed]
- Browne, B.M.; Stensland, K.D.; Patel, C.K.; Sullivan, T.; Burks, E.J.; Canes, D.; Raman, J.D.; Warrick, J.; Reiger-Christ, K.M. MicroRNA Expression Profiles in Upper Tract Urothelial Carcinoma Differentiate Tumor Grade, Stage, and Survival: Implications for Clinical Decision-Making. Urology 2019, 123, 93–100. [Google Scholar] [CrossRef]
- Tao, J.; Yang, X.; Li, P.; Wei, J.; Deng, X.; Cheng, Y.; Qin, C.; Ju, X.; Meng, X.; Li, J.; et al. Identification of Circulating MicroRNA Signatures for Upper Tract Urothelial Carcinoma Detection. Mol. Med. Rep. 2015, 12, 6752–6760. [Google Scholar] [CrossRef]
- Zaravinos, A.; Lambrou, G.I.; Mourmouras, N.; Katafygiotis, P.; Papagregoriou, G.; Giannikou, K.; Delakas, D.; Deltas, C. New MiRNA Profiles Accurately Distinguish Renal Cell Carcinomas and Upper Tract Urothelial Carcinomas from the Normal Kidney. PLoS ONE 2014, 9, e91646. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-H.; Li, S.-C.; Kao, Y.-H.; Luo, H.-L.; Cheng, Y.-T.; Lin, P.-R.; Tai, M.-H.; Chiang, P.-H. MiR-30a-5p Inhibits Epithelial-to-Mesenchymal Transition and Upregulates Expression of Tight Junction Protein Claudin-5 in Human Upper Tract Urothelial Carcinoma Cells. Int. J. Mol. Sci. 2017, 18, 1826. [Google Scholar] [CrossRef]
- Popovska-Jankovic, K.; Noveski, P.; Jankovic-Velickovic, L.; Stojnev, S.; Cukuranovic, R.; Stefanovic, V.; Toncheva, D.; Staneva, R.; Polenakovic, M.; Plaseska-Karanfilska, D. MicroRNA Profiling in Patients with Upper Tract Urothelial Carcinoma Associated with Balkan Endemic Nephropathy. BioMed Res. Int. 2016, 2016, 7450461. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Zeng, Y.; Wang, J.; Liu, Z.; Shen, B.; Ge, J.; Liu, Y.; Guo, Y.; Qiu, J. Differential MicroRNA Expression in Aristolochic Acid-Induced Upper Urothelial Tract Cancers Ex Vivo. Mol. Med. Rep. 2015, 12, 6533–6546. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, L.; Ingelmo-Torres, M.; Mallofré, C.; Lozano, J.J.; Verhasselt-Crinquette, M.; Leroy, X.; Colin, P.; Comperat, E.; Roupret, M.; Alcaraz, A.; et al. Prognostic Value of MicroRNA Expression Pattern in Upper Tract Urothelial Carcinoma. BJU Int. 2014, 113, 813–821. [Google Scholar] [CrossRef]
- Ke, H.-L.; Li, W.-M.; Lin, H.-H.; Hsu, W.-C.; Hsu, Y.-L.; Chang, L.-L.; Huang, C.-N.; Li, C.-C.; Chang, H.-P.; Yeh, H.-C.; et al. Hypoxia-Regulated MicroRNA-210 Overexpression Is Associated with Tumor Development and Progression in Upper Tract Urothelial Carcinoma. Int. J. Med. Sci. 2017, 14, 578. [Google Scholar] [CrossRef]
- Hsu, W.-C.; Li, W.-M.; Lee, Y.-C.; Huang, A.-M.; Chang, L.-L.; Lin, H.-H.; Wu, W.-J.; Li, C.-C.; Liang, P.-I.; Ke, H.-L. MicroRNA-145 Suppresses Cell Migration and Invasion in Upper Tract Urothelial Carcinoma by Targeting ARF6. FASEB J. 2020, 34, 5975–5992. [Google Scholar] [CrossRef] [PubMed]
- Browne, B.; Patel, C.; Sullivan, T.; Burks, E.; Raman, J.; Warrick, J.; Canes, D. Rieger, -Christ Kimberly Pd13-02 Micro-Rna Expression Profiles in Upper Tract Urothelial Carcinoma Differentiate Grade and Stage: Implications for Clinical Decision Making. J. Urol. 2016, 195, e298. [Google Scholar] [CrossRef]
- Gottardo, F.; Liu, C.G.; Ferracin, M.; Calin, G.A.; Fassan, M.; Bassi, P.; Sevignani, C.; Byrne, D.; Negrini, M.; Pagano, F.; et al. Micro-RNA Profiling in Kidney and Bladder Cancers. Urol. Oncol. 2007, 25, 387–392. [Google Scholar] [CrossRef]
- Dyrskjøt, L.; Ostenfeld, M.S.; Bramsen, J.B.; Silahtaroglu, A.N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J.L.; Andersen, C.L.; Zieger, K.; et al. Genomic Profiling of MicroRNAs in Bladder Cancer: MiR-129 Is Associated with Poor Outcome and Promotes Cell Death in Vitro. Cancer Res. 2009, 69, 4851–4860. [Google Scholar] [CrossRef]
- Neely, L.A.; Rieger-Christ, K.M.; Neto, B.S.; Eroshkin, A.; Garver, J.; Patel, S.; Phung, N.A.; McLaughlin, S.; Libertino, J.A.; Whitney, D.; et al. A MicroRNA Expression Ratio Defining the Invasive Phenotype in Bladder Tumors. Urol. Oncol. 2010, 28, 39–48. [Google Scholar] [CrossRef]
- Catto, J.W.F.; Abbod, M.F.; Wild, P.J.; Linkens, D.A.; Pilarsky, C.; Rehman, I.; Rosario, D.J.; Denzinger, S.; Burger, M.; Stoehr, R.; et al. The Application of Artificial Intelligence to Microarray Data: Identification of a Novel Gene Signature to Identify Bladder Cancer Progression. Eur. Urol. 2010, 57, 398–406. [Google Scholar] [CrossRef][Green Version]
- Catto, J.W.F.; Miah, S.; Owen, H.C.; Bryant, H.; Myers, K.; Dudziec, E.; Larré, S.; Milo, M.; Rehman, I.; Rosario, D.J.; et al. Distinct MicroRNA Alterations Characterize High- and Low-Grade Bladder Cancer. Cancer Res. 2009, 69, 8472–8481. [Google Scholar] [CrossRef]
- Yates, D.R.; Rehman, I.; Abbod, M.F.; Meuth, M.; Cross, S.S.; Linkens, D.A.; Hamdy, F.C.; Catto, J.W.F. Promoter Hypermethylation Identifies Progression Risk in Bladder Cancer. Clin. Cancer Res. 2007, 13, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, M.; Liu, Q.; Han, Z.; Zhao, Y.; Ji, S. MiR-145-5p Inhibits the Proliferation and Migration of Bladder Cancer Cells by Targeting TAGLN2. Oncol. Lett. 2018, 16, 6355–6360. [Google Scholar] [CrossRef] [PubMed]
- Ganji, S.M.; Saidijam, M.; Amini, R.; Mousavi-Bahar, S.H.; Shabab, N.; Seyedabadi, S.; Mahdavinezhad, A. Evaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer. Int. J. Mol. Cell Med. 2017, 6, 87–95. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, X.; Liu, J.; Zhu, W.; Zhan, X.; Sun, S. MicroRNA-497 Upregulation Inhibits Cell Invasion and Metastasis in T24 and BIU-87 Bladder Cancer Cells. Mol. Med. Rep. 2017, 16, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Sun, T.; Ye, F.; Kong, W.; Jin, H. MicroRNA-124-3p Affects Proliferation, Migration and Apoptosis of Bladder Cancer Cells through Targeting AURKA. Cancer Biomark. 2017, 19, 93–101. [Google Scholar] [CrossRef]
- Wang, J.-R.; Liu, B.; Zhou, L.; Huang, Y.-X. MicroRNA-124-3p Suppresses Cell Migration and Invasion by Targeting ITGA3 Signaling in Bladder Cancer. Cancer Biomark. 2019, 24, 159–172. [Google Scholar] [CrossRef]
- Liu, X.; Kong, C.; Zhang, Z. MiR-130b Promotes Bladder Cancer Cell Proliferation, Migration and Invasion by Targeting VGLL4. Oncol. Rep. 2018, 39, 2324–2332. [Google Scholar] [CrossRef]
- He, X.; Ping, J.; Wen, D. MicroRNA-186 Regulates the Invasion and Metastasis of Bladder Cancer via Vascular Endothelial Growth Factor C. Exp. Ther. Med. 2017, 14, 3253–3258. [Google Scholar] [CrossRef]
- Mao, X.-W.; Xiao, J.-Q.; Li, Z.-Y.; Zheng, Y.-C.; Zhang, N. Effects of MicroRNA-135a on the Epithelial-Mesenchymal Transition, Migration and Invasion of Bladder Cancer Cells by Targeting GSK3β through the Wnt/β-Catenin Signaling Pathway. Exp. Mol. Med. 2018, 50, e429. [Google Scholar] [CrossRef]
- Wang, W.; Shen, F.; Wang, C.; Lu, W.; Wei, J.; Shang, A.; Wang, C. MiR-1-3p Inhibits the Proliferation and Invasion of Bladder Cancer Cells by Suppressing CCL2 Expression. Tumour Biol. 2017, 39, 1010428317698383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Z.; Wang, X. MiRNA-373 Promotes Urinary Bladder Cancer Cell Proliferation, Migration and Invasion through Upregulating Epidermal Growth Factor Receptor. Exper Ther. Med. 2019, 17, 1190–1195. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Q.; Wang, Y. MiR-125b-5p Suppresses the Bladder Cancer Progression via Targeting HK2 and Suppressing PI3K/AKT Pathway. Hum. Cell 2020, 33, 185–194. [Google Scholar] [CrossRef]
- Yan, T.; Ye, X.-X. MicroRNA-328-3p Inhibits the Tumorigenesis of Bladder Cancer through Targeting ITGA5 and Inactivating PI3K/AKT Pathway. Eur. Rev. Med. Pharm. Sci. 2019, 23, 5139–5148. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, S.; Wang, L.; Zhang, W.; Zhang, Z.; Guo, Y.; Wu, Y.; Yi, F.; Yao, X. MicroRNA-154 Functions as a Tumor Suppressor in Bladder Cancer by Directly Targeting ATG7. Oncol. Rep. 2019, 41, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ying, Y.; Xie, H.; Li, J.; Ma, X.; He, L.; Xu, M.; Chen, S.; Shen, H.; Zheng, X.; et al. MiR-665 Inhibits Epithelial-to-Mesenchymal Transition in Bladder Cancer via the SMAD3/SNAIL Axis. Cell Cycle 2021, 20, 1242–1252. [Google Scholar] [CrossRef]
- Xie, X.; Pan, J.; Han, X.; Chen, W. Downregulation of MicroRNA-532-5p Promotes the Proliferation and Invasion of Bladder Cancer Cells through Promotion of HMGB3/Wnt/β-Catenin Signaling. Chem.-Biol. Interact. 2019, 300, 73–81. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, S.; Shi, D.; Zhang, J.; Zhang, Z.; Guo, Y.; Wu, Y.; Wang, R.; Wang, L.; Huang, Y.; et al. MicroRNA-153 Decreases Tryptophan Catabolism and Inhibits Angiogenesis in Bladder Cancer by Targeting Indoleamine 2,3-Dioxygenase 1. Front. Oncol. 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, J.; Ying, Y.; Xie, H.; Chen, H.; Xu, X.; Zheng, X. MIR-300 in the Imprinted DLK1-DIO3 Domain Suppresses the Migration of Bladder Cancer by Regulating the SP1/MMP9 Pathway. Cell Cycle 2018, 17, 2790–2801. [Google Scholar] [CrossRef] [PubMed]
- Adam, L.; Zhong, M.; Choi, W.; Qi, W.; Nicoloso, M.; Arora, A.; Calin, G.; Wang, H.; Siefker-Radtke, A.; McConkey, D.; et al. MiR-200 Expression Regulates Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Reverses Resistance to Epidermal Growth Factor Receptor Therapy. Clin. Cancer Res. 2009, 15, 5060–5072. [Google Scholar] [CrossRef]
- Wiklund, E.D.; Bramsen, J.B.; Hulf, T.; Dyrskjøt, L.; Ramanathan, R.; Hansen, T.B.; Villadsen, S.B.; Gao, S.; Ostenfeld, M.S.; Borre, M.; et al. Coordinated Epigenetic Repression of the MiR-200 Family and MiR-205 in Invasive Bladder Cancer. Int. J. Cancer 2011, 128, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Kenney, P.A.; Wszolek, M.F.; Rieger-Christ, K.M.; Neto, B.S.; Gould, J.J.; Harty, N.J.; Mosquera, J.M.; Zeheb, R.; Loda, M.; Darling, D.S.; et al. Novel ZEB1 Expression in Bladder Tumorigenesis. BJU Int. 2011, 107, 656–663. [Google Scholar] [CrossRef]
- Burk, U.; Schubert, J.; Wellner, U.; Schmalhofer, O.; Vincan, E.; Spaderna, S.; Brabletz, T. A Reciprocal Repression between ZEB1 and Members of the MiR-200 Family Promotes EMT and Invasion in Cancer Cells. EMBO Rep. 2008, 9, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Enokida, H.; Chiyomaru, T.; Tatarano, S.; Hidaka, H.; Yamasaki, T.; Gotannda, T.; Tachiwada, T.; Nohata, N.; Yamane, T. Tumor Suppressive MicroRNA-1 Mediated Novel Apoptosis Pathways through Direct Inhibition of Splicing Factor Serine/Arginine-Rich 9 (SRSF9/SRp30c) in Bladder Cancer. BioChem Biophys. Res. Commun. 2012, 417, 588–593. [Google Scholar] [CrossRef]
- Matsushita, R.; Seki, N.; Chiyomaru, T.; Inoguchi, S.; Ishihara, T.; Goto, Y.; Nishikawa, R.; Mataki, H.; Tatarano, S.; Itesako, T.; et al. Tumour-Suppressive MicroRNA-144-5p Directly Targets CCNE1/2 as Potential Prognostic Markers in Bladder Cancer. Br. J. Cancer 2015, 113, 282–289. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Enokida, H.; Tatarano, S.; Kawahara, K.; Uchida, Y.; Nishiyama, K.; Fujimura, L.; Kikkawa, N.; Seki, N.; Nakagawa, M. MiR-145 and MiR-133a Function as Tumour Suppressors and Directly Regulate FSCN1 Expression in Bladder Cancer. Br. J. Cancer 2010, 102, 883–891. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Enokida, H.; Kawakami, K.; Tatarano, S.; Uchida, Y.; Kawahara, K.; Nishiyama, K.; Seki, N.; Nakagawa, M. Functional Role of LASP1 in Cell Viability and Its Regulation by MicroRNAs in Bladder Cancer. Urol. Oncol. 2012, 30, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.F.; Zeng, F.; Qi, L.; Zu, X.B.; Wang, J.; Liu, L.F.; Li, Y. Transforming Growth Factor-β1 Induces Epithelial-mesenchymal Transition and Increased Expression of Matrix Metalloproteinase-16 via MiR-200b Downregulation in Bladder Cancer Cells. Mol. Med. Rep. 2014, 10, 1549–1554. [Google Scholar] [CrossRef]
- Jiang, X.; Du, L.; Duan, W.; Wang, R.; Yan, K.; Wang, L.; Li, J.; Zheng, G.; Zhang, X.; Yang, Y.; et al. Serum MicroRNA Expression Signatures as Novel Noninvasive Biomarkers for Prediction and Prognosis of Muscle-Invasive Bladder Cancer. Oncotarget 2016, 7, 36733–36742. [Google Scholar] [CrossRef]
- Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating MiRNA Panels for Specific and Early Detection in Bladder Cancer. Cancer Sci. 2019, 110, 408–419. [Google Scholar] [CrossRef]
- Hanke, M.; Hoefig, K.; Merz, H.; Feller, A.C.; Kausch, I.; Jocham, D.; Warnecke, J.M.; Sczakiel, G. A Robust Methodology to Study Urine MicroRNA as Tumor Marker: MicroRNA-126 and MicroRNA-182 Are Related to Urinary Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2010, 28, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Fujita, K.; Jingushi, K.; Kawashima, A.; Ujike, T.; Nagahara, A.; Ueda, Y.; Tanigawa, G.; Yoshioka, I.; Ueda, K.; et al. MiR-21-5p in Urinary Extracellular Vesicles Is a Novel Biomarker of Urothelial Carcinoma. Oncotarget 2017, 8, 24668–24678. [Google Scholar] [CrossRef] [PubMed]
- Long, J.D.; Sullivan, T.B.; Humphrey, J.; Logvinenko, T.; Summerhayes, K.A.; Kozinn, S.; Harty, N.; Summerhayes, I.C.; Libertino, J.A.; Holway, A.H.; et al. A Non-Invasive MiRNA Based Assay to Detect Bladder Cancer in Cell-Free Urine. Am. J. Transl Res. 2015, 7, 2500–2509. [Google Scholar] [PubMed]
- Urquidi, V.; Netherton, M.; Gomes-Giacoia, E.; Serie, D.J.; Eckel-Passow, J.; Rosser, C.J.; Goodison, S. A MicroRNA Biomarker Panel for the Non-Invasive Detection of Bladder Cancer. Oncotarget 2016, 7, 86290–86299. [Google Scholar] [CrossRef]
- Piao, X.-M.; Jeong, P.; Kim, Y.-H.; Byun, Y.J.; Xu, Y.; Kang, H.W.; Ha, Y.-S.; Kim, W.T.; Lee, J.-Y.; Woo, S.H.; et al. Urinary Cell-Free MicroRNA Biomarker Could Discriminate Bladder Cancer from Benign Hematuria. Int. J. Cancer 2019, 144, 380–388. [Google Scholar] [CrossRef]
- Zhang, D.-Z.; Lau, K.-M.; Chan, E.S.Y.; Wang, G.; Szeto, C.-C.; Wong, K.; Choy, R.K.W.; Ng, C.-F. Cell-Free Urinary MicroRNA-99a and MicroRNA-125b Are Diagnostic Markers for the Non-Invasive Screening of Bladder Cancer. PLoS ONE 2014, 9, e100793. [Google Scholar] [CrossRef] [PubMed]
- Sapre, N.; Macintyre, G.; Clarkson, M.; Naeem, H.; Cmero, M.; Kowalczyk, A.; Anderson, P.D.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. A Urinary MicroRNA Signature Can Predict the Presence of Bladder Urothelial Carcinoma in Patients Undergoing Surveillance. Br. J. Cancer 2016, 114, 454–462. [Google Scholar] [CrossRef]
- Chakraborty, C.; Wen, Z.-H.; Agoramoorthy, G.; Lin, C.-S. Therapeutic MicroRNA Delivery Strategies with Special Emphasis on Cancer Therapy and Tumorigenesis: Current Trends and Future Challenges. Curr. Drug Metab. 2016, 17, 469–477. [Google Scholar] [CrossRef]
- Segal, M.; Slack, F.J. Challenges Identifying Efficacious MiRNA Therapeutics for Cancer. Expert Opin. Drug Discov. 2020, 15, 987–992. [Google Scholar] [CrossRef]
- Van Rooij, E.; Marshall, W.S.; Olson, E.N. Toward MicroRNA-Based Therapeutics for Heart Disease—The Sense in Antisense. Circ. Res. 2008, 103, 919–928. [Google Scholar] [CrossRef]
- Kauppinen, S.; Vester, B.; Wengel, J. Locked Nucleic Acid: High-Affinity Targeting of Complementary RNA for RNomics. Handb. Exp. Pharm. 2006, 173, 405–422. [Google Scholar] [CrossRef]
- Gallo Cantafio, M.E.; Nielsen, B.S.; Mignogna, C.; Arbitrio, M.; Botta, C.; Frandsen, N.M.; Rolfo, C.; Tagliaferri, P.; Tassone, P.; Di Martino, M.T. Pharmacokinetics and Pharmacodynamics of a 13-Mer LNA-Inhibitor-MiR-221 in Mice and Non-Human Primates. Mol. Ther. Nucleic Acids 2016, 5, e326. [Google Scholar] [CrossRef] [PubMed]
- Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA Sponges: Competitive Inhibitors of Small RNAs in Mammalian Cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef]
- Choi, W.Y.; Giraldez, A.J.; Schier, A.F. Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by MiR-430. Science 2007, 318, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Berkhout, B. MiRNA Cassettes in Viral Vectors: Problems and Solutions. Biochim. Biophys. Acta 2011, 1809, 732–745. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Y.; Peng, H.; Chen, Y.; Zhu, P.; Huang, Y. Recent Progress in MicroRNA Delivery for Cancer Therapy by Non-Viral Synthetic Vectors. Adv. Drug Deliv. Rev. 2015, 81, 142–160. [Google Scholar] [CrossRef] [PubMed]


| miRNA | Samples | Target Genes/Function | Type | Level | Year | Ref. | |
|---|---|---|---|---|---|---|---|
| 1. | miR-21 | RCC cell line (ACHN) | Promoted cell proliferation and differentiation and decreased apoptosis via regulating MTOR-STAT3 signaling pathway | oncomiR | ↑ | 2016 | [36] | 
| 2. | miR-34a | FFPE kidney tissue samples from patients with primary RCC | TP53INP2, Tp53, DFFA | oncomiR | ↑ | 2017 | [37] | 
| 3. | miR-429 | Cell lines (786-O, A498) | Inhibited cell proliferation, migration and invasion via down-regulating Sp1 | TS | ↓ | 2016 | [38] | 
| 4. | miR-155-5p and miR-210-3p | Tumor tissue from patients with newly diagnosed and histologically confirmed ccRCC | Associated with a high risk of ccRCC recurrence by regulating inflammation-related pathways and IL-2 signaling events mediated by PI3Ks as well as BCR signaling | oncomiR | ↑ | 2018 | [39] | 
| 5. | miR-106b | RCC tissues and Cell lines (786-O and ACHN) | Enhanced cell migration and proliferation and suppressed apoptosis via targeting p21/WAF1/Cip1 pathway and TWIST1 | oncomiR | ↑ | 2016 | [40] | 
| 6. | miR-206 | ccRCC and corresponding non-cancerous tissues | Inhibited cell proliferation by inducing cell cycle arrest via targeting cell cycle-related gene CDK4, CDK9 and CCND1 | TS | ↓ | 2016 | [41] | 
| 7. | miR-22 | Cell lines (786-O and A498) | Suppressed cell proliferation, migration and invasion by regulating PTEN | TS | ↓ | 2016 | [42] | 
| 8. | miR-30a-5p | ccRCC and adjacent normal tissue samples and 769-P cells | Prevented cellular proliferation and invasion in vitro and in vivo via targeting ZEB2 and suppressing EMT | TS | ↓ | 2017 | [43] | 
| 9. | miR-21 and miR-221 | Paired samples of primary ccRCC and adjacent non-tumorous tissue | Promoted cell cycle progression and facilitated cell proliferation via targeting p53 and p57 | oncomiR | ↑ | 2016 | [44] | 
| 10. | miR-508 | ccRCC tissues and paired adjacent normal tissues Papillary RCC cell lines (Caki-2, ACHN) and ccRCC cell lines (786-O, A498) | Decreased cell proliferation and invasion via targeting ZEB1 | TS | ↓ | 2019 | [45] | 
| 11. | miR-384 | RCC and normal tissues. RCC cell lines (769-P, 786-O, A498, SN12-PM6) | Suppressed cell proliferation, migration and cell cycle via targeting RAB23 | TS | ↓ | 2018 | [46] | 
| 12. | miR-10a | RCC tissues in addition to cell lines (A498 and 786-O) | Inhibited cell invasion and EMT via targeting BDNF | TS | ↓ | 2021 | [47] | 
| 13. | miR-10a-5p | Cell lines (786-O, A498) | Inhibited cell migration and invasion via targeting SKA1 | TS | ↓ | 2017 | [48] | 
| 14. | miR-532-5p and miR-532-3p | RCC tissues and cell lines (786-O and A498) | Attenuated proliferation, migration and invasion by targeting AQP9 | TS | ↓ | 2019 | [49] | 
| 15. | miR-101-5p and miR-101-3p | cRCC tissues and cell lines (786-0 and A498) | Induced cell cycle arrest and apoptosis via targeting DONSON | TS | ↓ | 2020 | [50] | 
| 16. | miR-149-5p and miR-149-3p | Tumor tissues from patients with ccRCC | Inhibited cell migration and invasion via targeting FOXM1 | TS | ↓ | 2017 | [51] | 
| 17. | miR-19a and miR-19b | Paired tumor and adjacent normal kidney tissues and cell lines (786-O, Caki-1, Caki-2, A498, SN12pm6, ACHN) | Promoted cell migration, proliferation and invasion via targeting RHOB | oncomiR | ↑ | 2018 | [52] | 
| 18. | miR-451a | Tumor and normal tissues from RCC patients and cell lines (786-O, A498) | Inhibited cell migration and invasion via targeting PMM2 | TS | ↓ | 2018 | [53] | 
| 19. | miR-27 | Xenograft animal model and RCC cell line (786-O) | Suppressed cell proliferation, migration and invasion via targeting EGFR and induced cell apoptosis | TS | ↓ | 2016 | [54] | 
| 20. | miR-20b-5p | RCC tissues and cell lines (293T) | - Inhibited cell proliferation and migration - promoted cellular apoptosis via regulating PTEN, BRCA1 and p21 | TS | ↓ | 2016 | [55] | 
| 21. | miR-18a | Cell lines (ACHN, OSRC-2, HK-2, Caki-1, 786-O and A498) | Enhanced migration and invasion via regulating HIF1A/PVT1 pathway | oncomiR | ↑ | 2020 | [56] | 
| 22. | miR-106a-5p | RCC tissues and cell lines (OSRC-2, 786-O, ACHN, Ketr-3) | Decreased cell metastasis, migration, invasion via targeting PAK5 | TS | ↓ | 2017 | [57] | 
| 23. | miR-543 | ccRCC tissues and adjacent non-cancerous tissues | Promoted cell proliferation and invasion via targeting KLF6 and p21 | oncomiR | ↑ | 2018 | [58] | 
| 24. | miR-200c | Metastatic ccRCC tissues | Suppressed cell growth and promoted apoptosis. Inhibited EMT by targeting ZEB1 and ZEB2 | TS | ↓ | 2019 | [59] | 
| 25. | miR-200a | RCC cell lines (786-O) | Suppressed cell growth, arrested cell cycle, and enhanced cell apoptosis by targeting SIRT1 | TS | ↓ | 2017 | [60] | 
| 26. | miR-200a-3p | Cell lines (786-O, ACHN) | Inhibited cell proliferation by inducing apoptosis via down-regulating SPAG9 | TS | ↓ | 2016 | [61] | 
| 27. | miR-30e-3p | Cell lines (A498 and 786O) | Inhibited cell invasion and migration via targeting SNAI1 | TS | ↓ | 2017 | [62] | 
| 28. | miR-101 | RCC tissues from patients before and following sunitinib treatment | Down-regulation of miR-101 was associated with resistance to sunitinib. Inhibited cell migration and invasion via targeting UHRF1 | TS | ↓ | 2016 | [63] | 
| miRNA | Samples | Level | Sensitivity | Specificity | Ref. | 
|---|---|---|---|---|---|
| miR-144-3p | Plasma | ↑ | 87.10% | 83.00% | [85] | 
| miR-210 | Plasma | ↑ | 82.50% | 80.00% | [86] | 
| miR-221and miR-222 | Plasma | ↑ | 72.50% | 33.30% | [87] | 
| miR-122-5p and miR-206 | Serum | ↑ | 57.10% | 83.80% | [88] | 
| miR-210 | Serum | ↑ | 70.00% | 62.20% | [89] | 
| miR-1233 | Serum | ↑ | 81.00% | 76.00% | [89] | 
| miR-30c-5p | Urine | ↓ | 68.57% | 100.0% | [90] | 
| let-7 | Urine | ↑ | 71.00% | 81.00% | [91] | 
| miR-34b-5p and miR-1183 | Urine | ↑ | 69.00% | 65.00% | [92] | 
| miR-126-3p and miR-34b-5p | Urine | ↑ | 82.80% | 65.00% | [92] | 
| miR-126-3p and miR-126-5p | Urine | ↑ | 72.40% | 70.00% | [92] | 
| miR-150-5p and miR-126-3p | Urine | ↑ | 72.40% | 80.00% | [92] | 
| miR-150 and 5p and miR-1183 | Urine | ↑ | 86.20% | 55.00% | [92] | 
| miR-210 | Urine | ↑ | 57.80% | 80.00% | [93] | 
| miR-486-5p and miR-126-3p | Urine | ↑ | 72.40% | 60.00% | [92] | 
| miRNA | Samples | Level | Diagnostic/Prognostic Value | Ref. | 
|---|---|---|---|---|
| miR-31 and miR-149 | FFPE UTUC tissues | ↑ | - Independently associated with high tumor progression, recurrence, stage and cancer-specific survival - Differentiated two groups with a significantly different probability of tumor progression (HR: 4.78) and death (HR: 2.76) | [103] | 
| miR-29b-2-5p, miR-18a-5p, miR-223-3p and miR-199a-5p | Radical nephroureterectomy specimens from patients with UTUC | ↑ | Identified high-grade UTUC with a sensitivity of 83% and specificity of 85% | [97] | 
| miR-10b-5p, miR-26a-5p-5p, miR-31-5p and miR-146b-5p | Predicted ≥ pT2 disease with a sensitivity of 64% and specificity of 96% | |||
| miR-30a-5p | UTUC tissues and adjacent normal tissues and cell line (BFTC-909) | ↓ | Suppressed cell proliferation, migration and EMT | [100] | 
| miR-3144-5p, miR-193b-3p, miR-587, miR-3117-3p, miR-769-5p and miR-617 | UTUC, ccRCC, papRCC and chRCC tissues | ↑ | Differentiate between UTUC and other tumors (ccRCC, papRCC and chRCC) | [99] | 
| miR-210 | UTUC and adjacent normal tissues | ↑ | - Up-regulated in high-stage and high-grade tumors - Overexpression of HIF-1α correlated positively with miR-210 expression | [104] | 
| miR-145-5p | UTUC tissues and paired adjacent normal tissues | ↓ | Inhibited cell migration and invasion by targeting MMP2, N-cadherin, FAK and MMP7 | [105] | 
| miR-17-92 | FFPE UTUC tissues | ↑ | Associated with high-stage tumor | [106] | 
| miRNA | Samples | Target Genes/Function | Type | Level | Year | Ref. | |
|---|---|---|---|---|---|---|---|
| 1. | miR-145-5p | UBC tissues and cell lines (T24 and 5637) | Inhibited cell proliferation and migration via targeting TAGLN2 | TS | ↓ | 2018 | [113] | 
| 2. | miR-99a | UBC and paired adjacent non-cancerous tissues | Inhibited invasion via targeting ST5, MTOR, FGFR3 and IGF-1 | TS | ↓ | 2017 | [114] | 
| 3. | miR-497 | - UBC and adjacent normal tissues - Cell lines (T24 and BIU-87) | Inhibited cell migration, invasiveness and metastasis via reducing vimentin and α-smooth muscle actin | TS | ↓ | 2017 | [115] | 
| 4. | miR-124-3p | UBC tissues and cell lines | Suppressed cell proliferation and migration, and promoted cell apoptosis via targeting AURKA | TS | ↓ | 2017 | [116] | 
| Clinical specimens from UBC patients and bladder cancer cell lines | Suppressed cell migration and invasion via targeting ITGA3 and its downstream FAK/PI3K/AKT and FAK/Src pathways | TS | ↓ | 2019 | [117] | ||
| 5. | miR-130b | UBC tissues and cell lines | Promoted cell proliferation and invasion via targeting VGLL4 | oncomiR | ↑ | 2018 | [118] | 
| 6. | miR-186 | UBC tissues and blood/urine samples | - Inhibited invasion and metastasis via targeting VEGF-C - miR-186 was reduced in tumor tissues, blood and urine | TS | ↓ | 2017 | [119] | 
| 7. | miR-135a | UBC and adjacent normal tissues | Enhanced cell proliferation, migration, invasion and tumor growth via targeting GSK3β and E-cadherin in addition to activating Wnt/β-catenin signaling pathway | oncomiR | ↑ | 2018 | [120] | 
| 8. | miR-1-3p | UBC tissues with adjacent normal tissues | Suppressed cell proliferation and invasion and promoted apoptosis via targeting CCL2 | TS | ↓ | 2017 | [121] | 
| 9. | miR-373 | UBC and adjacent healthy tissues and blood samples | - Promoted cell proliferation, migration and invasion via up-regulation of EGFR - Serum miR-373 can accurately predict UBC | oncomiR | ↑ | 2018 | [122] | 
| 10. | miR-125b-5p | Cell lines (T24, RT4, J82, 5637, SV-HUC-1) and UBC tissues | - Low miR-125b-5p expression correlated with shorter 5-year survival time - Inhibited cell viability and migration and induced cell apoptosis by targeting HK2 through suppressing PI3K/AKT pathway | TS | ↓ | 2020 | [123] | 
| 11. | miR-328-3p | Tumor tissues from patients with UBC | - Suppressed cell proliferation, migration and invasion by targeting ITGA5 - Inhibited EMT and PI3K/AKT pathway | TS | ↓ | 2019 | [124] | 
| 12. | miR-154 | - Cell lines (J82, T24 UM-UC-3, SV-HUC-1) - UBC and paired adjacent non-cancerous bladder tissues | - Low expression of miR-154 was associated with poor survival outcomes - Inhibited cell proliferation, migration, and invasion in cultured cancer cells as well as cell growth in xenograft model via targeting ATG7 | TS | ↓ | 2018 | [125] | 
| 13. | miR-665 | UBC cell lines | Reversed EMT progression and inhibited cell migration via targeting SMAD3 and SNAI1 | TS | ↓ | 2021 | [126] | 
| 14. | miR-532-5p | UBC tissues and cell lines | Inhibited cell proliferation and invasion by targeting HMGB3 and regulation of nuclear expression of β-catenin as well as activation of Wnt/β-catenin signaling pathway | TS | ↓ | 2019 | [127] | 
| 15. | miR-153 | UBC tissues and cell lines | - Low miR-153 expression was associated with advanced tumor stage and poor OS - miR-153 inhibited cancer growth via promoting cell apoptosis and suppressing migration, invasion, and EMT via targeting IDO1 and IL6/STAT3/VEGF signaling | TS | ↓ | 2019 | [128] | 
| 16. | miR-300 | Paired UBC and adjacent non-tumorous bladder mucosal tissues as well as cell lines (T24, UM-UC3, SV-HUC-1) | Inhibited cell migration via targeting SP1 and regulating the SP1/MMP9 pathway | TS | ↓ | 2018 | [129] | 
| miRNA | Samples | Level | Sensitivity | Specificity | Ref. | 
|---|---|---|---|---|---|
| miR-422a-3p, miR-486-3p, miR-103a-3p and miR-27a-3p | Serum | ↑ | 90.0% | 70.0% | [139] | 
| miR-6724-5p, miR-1185-1-3p and miR-6831-5p | Serum | ↑ | 95.0% | 87.0% | [140] | 
| miR-6087, miR-3960 and miR-1343-5p | Serum | ↓ | |||
| RNA ratio: miR-126/miR-152 | Urine | -- | 72.0% | 82.0% | [141] | 
| miR-21-5p | Urine | ↑ | 75.0% | 95.8% | [142] | 
| mir-21, miR-93, miR-200c and miR-940 | Urine | ↑ | 88.0% | 78.0% | [143] | 
| miR-652, miR-199a-3p, miR-140-5p, miR-93 and miR-142-5p | Urine | ↑ | 87% | 100% | [144] | 
| RNA ratio: miR-6124/miR-4511 | Urine | -- | >90.0% | -- | [145] | 
| miR-99a and miR-125b | Urine | ↓ | 81.4% | 87.0% | [146] | 
| miR16, miR200c, miR205, miR21, miR221 and miR34a | Urine | ↑ | 88.0% | 48.0% | [147] | 
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, A.M.; Soliman, M.; Das, S.; Teoh, S.L. MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes 2021, 9, 2136. https://doi.org/10.3390/pr9122136
Soliman AM, Soliman M, Das S, Teoh SL. MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes. 2021; 9(12):2136. https://doi.org/10.3390/pr9122136
Chicago/Turabian StyleSoliman, Amro M., Mohamed Soliman, Srijit Das, and Seong Lin Teoh. 2021. "MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer" Processes 9, no. 12: 2136. https://doi.org/10.3390/pr9122136
APA StyleSoliman, A. M., Soliman, M., Das, S., & Teoh, S. L. (2021). MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes, 9(12), 2136. https://doi.org/10.3390/pr9122136
 
         
                                                

 
       