Standardization of Diploid Codonopsis laceolata Root Extract as an Anti-Hyperuricemic Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Instrumentation and Chromatographic Conditions
2.3. Preparation of Standards and Sample Solutions
2.4. Method Validation
3. Results and Discussion
3.1. Method Validation
3.1.1. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.1.2. Linearity
3.1.3. Precision and Accuracy
3.1.4. Repeatability
3.2. Contents of Lobetyolin from C. lanceolata Extracts
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemos Lima Rde, C.; Ferrari, F.C.; de Souza, M.R.; de Sa Pereira, B.M.; de Paula, C.A.; Saude-Guimaraes, D.A. Effects of extracts of leaves from Sparattosperma leucanthum on hyperuricemia and gouty arthritis. J. Ethnopharmacol. 2015, 161, 194–199. [Google Scholar] [CrossRef]
- Yoon, I.S.; Park, D.H.; Bae, M.S.; Oh, D.S.; Kwon, N.H.; Kim, J.E.; Choi, C.Y.; Cho, S.S. In Vitro and In Vivo Studies on Quercus acuta Thunb. (Fagaceae) Extract: Active Constituents, Serum Uric Acid Suppression, and Xanthine Oxidase Inhibitory Activity. Evid. Based Complement. Altern. Med. 2017, 2017, 4097195. [Google Scholar] [CrossRef]
- Kramer, H.M.; Curhan, G. The association between gout and nephrolithiasis: The National Health and Nutrition Examination Survey III, 1988–1994. Am. J. Kidney Dis. 2002, 40, 37–42. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, C.H.; Lee, J.H.; Yoon, B.Y.; Kim, H.A.; Suh, C.H.; Choi, S.T.; Song, J.S.; Joo, H.Y.; Choi, S.J.; et al. Current gout treatment and flare in South Korea: Prophylactic duration associated with fewer gout flares. Int. J. Rheum. Dis. 2017, 20, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef]
- Yoon, I.S.; Park, D.H.; Ki, S.H.; Cho, S.S. Effects of extracts from Corylopsis coreana Uyeki (Hamamelidaceae) flos on xanthine oxidase activity and hyperuricemia. J. Pharm. Pharmacol. 2016, 68, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
- Pascart, T.; Richette, P. Current and future therapies for gout. Expert Opin. Pharmacother. 2017, 18, 1201–1211. [Google Scholar] [CrossRef]
- Pereira, S.; Almeida, J.; Silva, A.; Quintas, M.; Candeias, O.; Freitas, F. Fatal liver necrosis due to allopurinol. Acta Med. Port. 1998, 11, 1141–1144. [Google Scholar] [PubMed]
- Umamaheswari, M.; Asokkumar, K.; Sivashanmugam, A.; Remyaraju, A.; Subhadradevi, V.; Ravi, T. In vitro xanthine oxidase inhibitory activity of the fractions of Erythrina stricta Roxb. J. Ethnopharmacol. 2009, 124, 646–648. [Google Scholar] [CrossRef]
- Chinchilla, S.P.; Urionaguena, I.; Perez-Ruiz, F. Febuxostat for the chronic management of hyperuricemia in patients with gout. Expert Rev. Clin. Pharmacol. 2016, 9, 665–673. [Google Scholar] [CrossRef]
- Yoon, I.S.; Cho, S.S. Effects of lobetyolin on xanthine oxidase activity in vitro and in vivo: Weak and mixed inhibition. Nat. Prod. Res. 2021, 35, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.F.; He, Z.D.; Han, Q.B.; Xu, H.X.; Jiang, R.W. The use of lobetyolin and HPLC-UV fingerprints for quality assessment of Radix Codonopsis. J. Food Drug Anal. 2007, 15, 258–264. [Google Scholar] [CrossRef]
- Bailly, C. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen). Nat. Prod. Bioprospecting 2021, 11, 143–153. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Y.; Jin, G.; Cui, Z.; Guo, W.; Zhang, X.; Liu, X. Lobetyolin inhibits the proliferation of breast cancer cells via ASCT2 down-regulation-induced apoptosis. Hum. Exp. Toxicol. 2021, 10, 9603271211021476. [Google Scholar] [CrossRef]
- Yoon, Y.P.; Ryu, J.; Park, S.H.; Lee, H.J.; Lee, S.; Lee, S.K.; Kim, J.O.; Hong, J.H.; Seok, J.H.; Lee, C.J. Effects of Lobetyolin, Lobetyol and Methyl linoleate on Secretion, Production and Gene Expression of MUC5AC Mucin from Airway Epithelial Cells. Tuberc. Respir. Dis. 2014, 77, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Han, A.Y.; Lee, Y.S.; Kwon, S.; Lee, H.S.; Lee, K.W.; Seol, G.H. Codonopsis lanceolata extract prevents hypertension in rats. Phytomedicine 2018, 39, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, K.J.; Kim, Y.H.; Kim, D.B.; Shin, G.H.; Cho, J.H.; Kim, B.K.; Lee, B.Y.; Lee, O.H. Codonopsis lanceolata extract prevents diet-induced obesity in C57BL/6 mice. Nutrients 2014, 6, 4663–4677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xu, M.L.; Hu, J.H.; Rasmussen, S.K.; Wang, M.H. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells--involvement of ROS generation and polyamine depletion. Food Chem. Toxicol. 2011, 49, 149–154. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.; Kim, J.; Seol, G.H.; Lee, K.-W. Lancemaside A, a major triterpene saponin of Codonopsis lanceolata enhances regulation of nitric oxide synthesis via eNOS activation. BMC Complementary Altern. Med. 2019, 19, 110. [Google Scholar] [CrossRef]
- Choi, H.J.; Park, D.H.; Song, S.H.; Yoon, I.S.; Cho, S.S. Development and Validation of a HPLC-UV Method for Extraction Optimization and Biological Evaluation of Hot-Water and Ethanolic Extracts of Dendropanax morbifera Leaves. Molecules 2018, 23, 650. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-H.; Kim, J.-E.; Shim, J.-H.; Yoon, G.; Bang, M.; Bae, C.-S.; Lee, K.-J.; Park, D.-H.; Cho, S.-S. HPLC analysis, optimization of extraction conditions and biological evaluation of Corylopsis coreana Uyeki Flos. Molecules 2016, 21, 94. [Google Scholar] [CrossRef] [PubMed]
Parameters | Conditions | ||
---|---|---|---|
Column temp | Zorbax extended-C18 (C18, 4.6 mm × 150 mm, 5 µm)/25 °C | ||
Flow rate | 1 mL/min | ||
Injection volumn | 10 μL | ||
UV detection | 280 nm | ||
Run time | 30 min | ||
Gradient | Time (min) | % A | % B |
0 | 10 | 90 | |
7 | 20 | 80 | |
8 | 20 | 80 | |
20 | 25 | 75 | |
21 | 100 | 0 | |
25 | 20 | 80 | |
30 | 20 | 80 |
Product | Validation Parameters | ||||
---|---|---|---|---|---|
Linearity Regression Plot | Accuracy | LOQ (μg/mL) | LOD (μg/mL) | ||
Mean Recovery (%) | RSD (%) | ||||
Lobetyolin | y = 7849.5X − 26,403 | 102.22 | 1.45 | 4.547 | 1.501 |
Lobetyolin | Intraday (n = 3) | ||
Concentration (μg/mL) | Detected (μg/mL, mean ± S.D) | R.S.D. (%) | Recovery (%) |
62.5 | 61.76 ± 2.47 | 1.23 | 98.82 |
125 | 125.305 ± 1.33 | 1.09 | 100.24 |
250 | 258.539 ± 4.38 | 1.72 | 103.42 |
Lobetyolin | Interday (n = 3) | ||
Concentration (μg/mL) | Detected (μg/mL, mean ± S.D) | R.S.D. (%) | Recovery (%) |
62.5 | 63.22 ± 0.77 | 1.28 | 101.16 |
125 | 128.03 ± 1.70 | 1.36 | 102.43 |
250 | 257.69 ± 4.32 | 1.70 | 103.08 |
Analyte | Added (μg/mL) | Recovery (μg/mL) | SD | RSD (%) a |
---|---|---|---|---|
Lobetyolin | 62.5 | 64.87 | 3.36 | 0.63 |
125 | 128.93 | 4.43 | 0.84 | |
250 | 264.86 | 4.85 | 0.56 |
Extract | Conc (% w/w) ± SD |
---|---|
Hot water | 0.17 ± 0.001 |
20% EtOH | 0.17 ± 0.001 |
40% EtOH | 0.21 ± 0.01 |
60% EtOH | 0.38 ± 0.03 |
80% EtOH | 0.38 ± 0.06 |
100% EtOH | 1.90 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.-Y.; Bok, S.-H.; Lee, S.-H.; Kim, M.-H.; Boo, H.-O.; Kim, H.-H.; Park, D.-H.; Cho, S.-S. Standardization of Diploid Codonopsis laceolata Root Extract as an Anti-Hyperuricemic Source. Processes 2021, 9, 2065. https://doi.org/10.3390/pr9112065
Song S-Y, Bok S-H, Lee S-H, Kim M-H, Boo H-O, Kim H-H, Park D-H, Cho S-S. Standardization of Diploid Codonopsis laceolata Root Extract as an Anti-Hyperuricemic Source. Processes. 2021; 9(11):2065. https://doi.org/10.3390/pr9112065
Chicago/Turabian StyleSong, Seung-Yub, So-Hyeon Bok, Sung-Ho Lee, Min-Hee Kim, Hee-Ock Boo, Hak-Hyun Kim, Dae-Hun Park, and Seung-Sik Cho. 2021. "Standardization of Diploid Codonopsis laceolata Root Extract as an Anti-Hyperuricemic Source" Processes 9, no. 11: 2065. https://doi.org/10.3390/pr9112065
APA StyleSong, S.-Y., Bok, S.-H., Lee, S.-H., Kim, M.-H., Boo, H.-O., Kim, H.-H., Park, D.-H., & Cho, S.-S. (2021). Standardization of Diploid Codonopsis laceolata Root Extract as an Anti-Hyperuricemic Source. Processes, 9(11), 2065. https://doi.org/10.3390/pr9112065