Alkali and Alkali-Earth Metals Incorporation to Ni/USY Catalysts for CO2 Methanation: The Effect of the Metal Nature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Preparation
2.2. Characterization Techniques
2.3. Catalytic Tests
3. Results
3.1. Ni-A/USY Catalysts
3.1.1. Calcined Catalysts Characterization
3.1.2. Reduced Catalysts Characterization
3.1.3. Catalytic Performances
3.1.4. Spent Catalysts Characterization
3.2. Ni-AE/USY Catalysts
3.2.1. Calcined Catalysts Characterization
3.2.2. Reduced Catalysts Characterization
3.2.3. Catalytic Performances
3.2.4. Spent Catalysts Characterization
3.3. Impregnation Solvent Effect
4. Discussion
4.1. Alkali Metals
4.2. Alkali-Earth Metals
4.3. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blanco, H.; Faaij, A. A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-Term Storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Thema, M.; Bauer, F.; Sterner, M. Power-to-Gas: Electrolysis and Methanation Status Review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [Google Scholar] [CrossRef]
- Jin Lee, W.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent Trend in Thermal Catalytic Low Temperature CO2 Methanation: A Critical Review. Catal. Today 2020, 368, 2–19. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on Methanation —From Fundamentals to Current Projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Malara, A.; Frontera, P.; Antonucci, P.; Macario, A. Smart Recycling of Carbon Oxides: Current Status of Methanation Reaction. Curr. Opin. Green Sustain. Chem. 2020, 26, 100376. [Google Scholar] [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A Review of Recent Catalyst Advances in CO2 Methanation Processes. Catal. Today 2020, 356, 471–489. [Google Scholar] [CrossRef]
- Huynh, H.L.; Yu, Z. CO2 Methanation on Hydrotalcite-Derived Catalysts and Structured Reactors: A Review. Energy Technol. 2020, 8, 1901475. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Li, Y.; Wu, C.; Yang, B.; Miao, Z.; Hu, X.; et al. Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward CO2 Methanation. Front. Chem. 2020, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Erdőhelyi, A. Hydrogenation of Carbon Dioxide on Supported Rh Catalysts. Catalysts 2020, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Bacariza, M.C.; Spataru, D.; Karam, L.; Lopes, J.M.; Henriques, C. Promising Catalytic Systems for CO2 Hydrogenation into CH4: A Review of Recent Studies. Processes 2020, 8, 1646. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent Advances in Methanation Catalysts for the Production of Synthetic Natural Gas. RCS Adv. 2015, 5, 22759–22776. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Lopes, J.M.; Henriques, C. Tuning Zeolite Properties towards CO2 Methanation: An Overview. ChemCatChem 2019, 11, 2388–2400. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Zhang, L.; Gao, J.; Shao, Y.; Dong, D.; Zhang, S.; Liu, Q.; Xu, L.; Hu, X. Impacts of Alkali or Alkaline Earth Metals Addition on Reaction Intermediates Formed in Methanation of CO2 over Cobalt Catalysts. J. Energy Inst. 2020, 93, 1581–1596. [Google Scholar] [CrossRef]
- Wang, S.; Yan, S.; Ma, X.; Gong, J. Recent Advances in Capture of Carbon Dioxide Using Alkali-Metal-Based Oxides. Energy Environ. Sci. 2011, 4, 3805–3819. [Google Scholar] [CrossRef]
- Liang, C.; Hu, X.; Wei, T.; Jia, P.; Zhang, Z.; Dong, D.; Zhang, S.; Liu, Q.; Hu, G. Methanation of CO2 over Ni/Al2O3 Modified with Alkaline Earth Metals: Impacts of Oxygen Vacancies on Catalytic Activity. Int. J. Hydrog. Energy 2019, 44, 8197–8213. [Google Scholar] [CrossRef]
- Liu, K.; Xu, X.; Xu, J.; Fang, X.; Liu, L.; Wang, X. The Distributions of Alkaline Earth Metal Oxides and Their Promotional Effects on Ni/CeO2 for CO2 Methanation. J. Co2 Util. 2020, 38, 113–124. [Google Scholar] [CrossRef]
- Méndez-Mateos, D.; Barrio, V.L.; Requies, J.M.; Cambra, J.F. Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation. Catalysts 2021, 11, 353. [Google Scholar] [CrossRef]
- Petala, A.; Panagiotopoulou, P. Methanation of CO2 over Alkali-Promoted Ru/TiO2 Catalysts: I. Effect of Alkali Additives on Catalytic Activity and Selectivity. Appl. Catal. B Environ. 2018, 224, 919–927. [Google Scholar] [CrossRef]
- Cimino, S.; Boccia, F.; Lisi, L. Effect of Alkali Promoters (Li, Na, K) on the Performance of Ru/Al2O3 Catalysts for CO2 Capture and Hydrogenation to Methane. J. Co2 Util. 2020, 37, 195–203. [Google Scholar] [CrossRef]
- Guo, M.; Lu, G. The Difference of Roles of Alkaline-Earth Metal Oxides on Silica-Supported Nickel Catalysts for CO2 Methanation. RSC Adv. 2014, 4, 58171–58177. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. The Role of Alkali and Alkaline Earth Metals in the CO2 Methanation Reaction and the Combined Capture and Methanation of CO2. Catalysts 2020, 10, 812. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Lopes, J.M.; Henriques, C. Enhanced Activity of CO2 Hydrogenation to CH4 over Ni Based Zeolites through the Optimization of the Si/Al Ratio. Microporous Mesoporous Mater. 2018, 267, 9–19. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Bértolo, R.; Graça, I.; Lopes, J.M.; Henriques, C. The Effect of the Compensating Cation on the Catalytic Performances of Ni/USY Zeolites towards CO2 Methanation. J. Co2 Util. 2017, 21, 280–291. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Maleval, M.; Graça, I.; Lopes, J.M.; Henriques, C. Power-to-Methane over Ni/Zeolites: Influence of the Framework Type. Microporous Mesoporous Mater. 2019, 274, 102–112. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Lopes, J.M.; Henriques, C. Ni-Ce/Zeolites for CO2 Hydrogenation to CH4: Effect of the Metal Incorporation Order. ChemCatChem 2018, 10, 2773–2781. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Amjad, S.; Teixeira, P.; Lopes, J.M.; Henriques, C. Boosting Ni Dispersion on Zeolite-Supported Catalysts for CO2 Methanation: The Influence of the Impregnation Solvent. Energy Fuels 2020, 34, 14656–14666. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Di Bartolomeo, E.; Kesavan, J.K.; Kumar, S.S.; Selvakumar, K. Dry Reforming of Methane over Ni Supported on Doped CeO2: New Insight on the Role of Dopants for CO2 Activation. J. Co2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Chayed, N.F.; Badar, N.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Optical Band Gap Energies of Magnesium Oxide (MgO) Thin Film and Spherical Nanostructures. AIP Conf. Proc. 2011, 1400, 328–332. [Google Scholar] [CrossRef]
- Nemade, K.R.; Waghuley, S.A. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. Available online: https://www.hindawi.com/journals/ijmet/2014/389416/ (accessed on 5 February 2018).
- Palacio, L.A.; Silva, E.R.; Catalão, R.; Silva, J.M.; Hoyos, D.A.; Ribeiro, F.R.; Ribeiro, M.F. Performance of Supported Catalysts Based on a New Copper Vanadate-Type Precursor for Catalytic Oxidation of Toluene. J. Hazard. Mater. 2008, 153, 628–634. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Westermann, A.; Ribeiro, M.F.; Lopes, J.M.; Henriques, C. CO2 Hydrogenation Over Ni-Based Zeolites: Effect of Catalysts Preparation and Pre-Reduction Conditions on Methanation Performance. Top. Catal 2015, 59, 314–325. [Google Scholar] [CrossRef]
- Graça, I.; González, L.V.; Bacariza, M.C.; Fernandes, A.; Henriques, C.; Lopes, J.M.; Ribeiro, M.F. CO2 Hydrogenation into CH4 on NiHNaUSY Zeolites. Appl. Catal. B Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Treacy, M.M.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-53067-7. [Google Scholar]
- Zhang, Y.; Gao, Y.; Louis, B.; Wang, Q.; Lin, W. Fabrication of Lithium Silicates from Zeolite for CO2 Capture at High Temperatures. J. Energy Chem. 2019, 33, 81–89. [Google Scholar] [CrossRef]
- Grasso, M.L.; Arneodo Larochette, P.; Gennari, F.C. CO2 Capture Properties of Li4SiO4 after Aging in Air at Room Temperature. J. Co2 Util. 2020, 38, 232–240. [Google Scholar] [CrossRef]
- Hubble, R.A.; Lim, J.Y.; Dennis, J.S. Kinetic Studies of CO2 Methanation over a Ni/γ-Al2O3 Catalyst. Faraday Discuss. 2016, 192, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, H.; Yang, X.; Bai, Y.; Li, J.; Kobayashi, N.; Kubota, M. Hydrophilic Substance Assisted Low Temperature LiOH·H2O Based Composite Thermochemical Materials for Thermal Energy Storage. Appl. Therm. Eng. 2018, 128, 706–711. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Drage, T.C.; Maroto-Valer, M.M. Novel Lithium-Based Sorbents from Fly Ashes for CO2 Capture at High Temperatures. Int. J. Greenh. Gas. Control. 2010, 4, 623–629. [Google Scholar] [CrossRef]
- Beyer, H.; Meini, S.; Tsiouvaras, N.; Piana, M.; Gasteiger, H.A. Thermal and Electrochemical Decomposition of Lithium Peroxide in Non-Catalyzed Carbon Cathodes for Li–Air Batteries. Phys. Chem. Chem. Phys. 2013, 15, 11025–11037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Peng, Z.; Li, C. A Study of Thermal Behavior of Cesium Phosphate. J. Anal. Calorim. 2016, 124, 1063–1070. [Google Scholar] [CrossRef]
- Fleger, Y.; Rosenbluh, M. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles. Int. J. Opt. 2009. [Google Scholar] [CrossRef] [Green Version]
- Mohammadijoo, M.; Naderi Khorshidi, Z.; Sadrnezhaad, S.K.; Mazinani, V. Synthesis and Characterization of Nickel Oxide Nanoparticle with Wide Band Gap Energy Prepared via Thermochemical Processing. IJNN 2014, 4, 6–9. [Google Scholar]
- Ning, X.; Lu, Y.; Fu, H.; Wan, H.; Xu, Z.; Zheng, S. Template Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type. Acs Appl. Mater. Interfaces 2017. [Google Scholar] [CrossRef] [PubMed]
- Ruckenstein, E.; Hang Hu, Y. Methane Partial Oxidation over NiO/MgO Solid Solution Catalysts. Appl. Catal. A Gen. 1999, 183, 85–92. [Google Scholar] [CrossRef]
- Guo, M.; Lu, G. The Effect of Impregnation Strategy on Structural Characters and CO2 Methanation Properties over MgO Modified Ni/SiO2 Catalysts. Catal. Commun. 2014, 54, 55–60. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Bebiano, S.S.; Lopes, J.M.; Henriques, C. Magnesium as Promoter of CO2 Methanation on Ni-Based USY Zeolites. Energy Fuels 2017, 31, 9776–9789. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.; Mohamed, I.; Fernandes, A.; Silva, J.; Ribeiro, F.; Pinheiro, C.I.C. Enhancement of Sintering Resistance of CaO-Based Sorbents Using Industrial Waste Resources for Ca-Looping in the Cement Industry. Sep. Purif. Technol. 2020, 235, 116190. [Google Scholar] [CrossRef]
- Teixeira, P.; Hipólito, J.; Fernandes, A.; Ribeiro, F.; Pinheiro, C.I.C. Tailoring Synthetic Sol–Gel CaO Sorbents with High Reactivity or High Stability for Ca-Looping CO2 Capture. Ind. Eng. Chem. Res. 2019, 58, 8484–8494. [Google Scholar] [CrossRef]
- Kong, M.; Yang, Q.; Fei, J.; Zheng, X. Experimental Study of Ni/MgO Catalyst in Carbon Dioxide Reforming of Toluene, a Model Compound of Tar from Biomass Gasification. Int. J. Hydrog. Energy 2012, 37, 13355–13364. [Google Scholar] [CrossRef]
- Belete, T.T.; van de Sanden, M.C.M.; Gleeson, M.A. Effects of Transition Metal Dopants on the Calcination of CaCO3 under Ar, H2O and H2. J. Co2 Util. 2019, 31, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Padeste, C.; Reller, A.; Oswald, H.R. The Influence of Transition Metals on the Thermal Decomposition of Calcium Carbonate in Hydrogen. Mater. Res. Bull. 1990, 25, 1299–1305. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Methanation of CO2 over Alkali-Promoted Ru/TiO2 Catalysts: II. Effect of Alkali Additives on the Reaction Pathway. Appl. Catal. B Environ. 2018, 236, 162–170. [Google Scholar] [CrossRef]
- Liang, C.; Ye, Z.; Dong, D.; Zhang, S.; Liu, Q.; Chen, G.; Li, C.; Wang, Y.; Hu, X. Methanation of CO2: Impacts of Modifying Nickel Catalysts with Variable-Valence Additives on Reaction Mechanism. Fuel 2019, 254, 115654. [Google Scholar] [CrossRef]
- Büchel, R.; Baiker, A.; Pratsinis, S.E. Effect of Ba and K Addition and Controlled Spatial Deposition of Rh in Rh/Al2O3 Catalysts for CO2 Hydrogenation. Appl. Catal. A Gen. 2014, 477, 93–101. [Google Scholar] [CrossRef]
- Iloy, R.A.; Jalama, K. Effect of Operating Temperature, Pressure and Potassium Loading on the Performance of Silica-Supported Cobalt Catalyst in CO2 Hydrogenation to Hydrocarbon Fuel. Catalysts 2019, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hu, X.; Wang, Y.; Hu, S.; Xiang, J.; Li, C.; Chen, G.; Liu, Q.; Wei, T.; Dong, D. Regulation the Reaction Intermediates in Methanation Reactions via Modification of Nickel Catalysts with Strong Base. Fuel 2019, 237, 566–579. [Google Scholar] [CrossRef]
- Westermann, A.; Azambre, B.; Bacariza, M.C.; Graça, I.; Ribeiro, M.F.; Lopes, J.M.; Henriques, C. Insight into CO2 Methanation Mechanism over NiUSY Zeolites: An Operando IR Study. Appl. Catal B. Environ. 2015, 174–175, 120–125. [Google Scholar] [CrossRef]
Catalyst | Vmicro 1 (cm3 g−1) | Vmeso 2 (cm3 g−1) | Sext 1 (m2 g−1) | dNiO 3 (nm) | h Index 4 | BGNiO 5 (eV) |
---|---|---|---|---|---|---|
USY | 0.25 | 0.28 | 282 | - | 0.94 | - |
Ni/USY | 0.16 | 0.20 | 165 | 20 | 0.95 | 3.79 |
Ni-Li/USY | <0.01 | 0.04 | 22 | 22 | 0.75 | 3.60 |
Ni-K/USY | <0.01 | 0.02 | 21 | 29 | 0.75 | 3.59 |
Ni-Cs/USY | <0.01 | 0.07 | 39 | 21 | 0.80 | 3.78 |
Catalyst | Vmicro 1 (cm3 g−1) | Vmeso 2 (cm3 g−1) | Sext 1 (m2 g−1) | dNiO 3 (nm) | h Index 4 | BGNiO 5 (eV) |
---|---|---|---|---|---|---|
USY | 0.25 | 0.28 | 282 | - | 0.94 | - |
Ni/USY | 0.16 | 0.20 | 165 | 20 | 0.95 | 3.79 |
Ni-Mg/USY | 0.10 | 0.10 | 145 | - | 0.55 | - |
Ni-Ca/USY | <0.01 | 0.11 | 77 | 18 | 0.70 | 3.75 |
Catalyst | Vmicro 1 (cm3 g−1) | Vmeso 2 (cm3 g−1) | Sext 1 (m2 g−1) | dNiO 3 (nm) | h Index 4 |
---|---|---|---|---|---|
Ni-Ca/USY | <0.01 | 0.11 | 77 | 18 | 0.70 |
Ni-Ca/USYP | 0.11 | 0.11 | 83 | 7 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacariza, M.C.; Grilo, C.; Teixeira, P.; Lopes, J.M.; Henriques, C. Alkali and Alkali-Earth Metals Incorporation to Ni/USY Catalysts for CO2 Methanation: The Effect of the Metal Nature. Processes 2021, 9, 1846. https://doi.org/10.3390/pr9101846
Bacariza MC, Grilo C, Teixeira P, Lopes JM, Henriques C. Alkali and Alkali-Earth Metals Incorporation to Ni/USY Catalysts for CO2 Methanation: The Effect of the Metal Nature. Processes. 2021; 9(10):1846. https://doi.org/10.3390/pr9101846
Chicago/Turabian StyleBacariza, M. Carmen, Cláudia Grilo, Paula Teixeira, José M. Lopes, and Carlos Henriques. 2021. "Alkali and Alkali-Earth Metals Incorporation to Ni/USY Catalysts for CO2 Methanation: The Effect of the Metal Nature" Processes 9, no. 10: 1846. https://doi.org/10.3390/pr9101846
APA StyleBacariza, M. C., Grilo, C., Teixeira, P., Lopes, J. M., & Henriques, C. (2021). Alkali and Alkali-Earth Metals Incorporation to Ni/USY Catalysts for CO2 Methanation: The Effect of the Metal Nature. Processes, 9(10), 1846. https://doi.org/10.3390/pr9101846