# Population Balance Modeling and Opinion Dynamics—A Mutually Beneficial Liaison?

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Population Balance Model

#### 2.1. Model Formulation

#### 2.2. Initial Distribution

#### 2.3. Model Analysis

#### 2.4. Numerical Methods

`ode23t`with an equal relative and absolute tolerance of 1 × 10

^{−6}and the analytically computed Jacobian matrix. In Appendix B.7, it is shown that for at least one case ($d=1$) the steady state distribution is reached in infinite time. This makes it impossible to simulate until the system reaches the steady state. Therefore, the simulations were run for at least 1000 time units and until the norm of the derivative with respect to time was less than 1 × 10

^{−7}. From this almost steady state, the steady state was estimated. Peaks were identified as clusters with the amount of agents at a pivot never less than 1 × 10

^{−6}. The number of agents in these clusters and their mean belief was computed. From this, the variance in the estimated steady steady was computed. This variance is almost identical to the variance computed from the distribution at the end of solving the ODEs. Accordingly, the state at the end of solving the ODEs should be sufficiently close to the steady state.

## 3. Numerical Results

#### 3.1. Uniform Initial Distribution

#### 3.2. Influence of Initial Distribution

## 4. Transfer to Engineering

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

DW model | Deffuant-Weisbuch model |

PB | population balance |

PBE | population balance equation |

PBM | population balance model |

## Appendix A. Derivation of Population Balance Equation

**Figure A1.**Region of x and ${x}_{1}$ that results in a valid complement ${x}_{2,c1}$; for illustration purposes, $\mu $ was set to 0.7.

## Appendix B. Moment Analysis

#### Appendix B.1. Definition of Moments

#### Appendix B.2. Transformation to a Square Integration Domain for the Source Term

#### Appendix B.3. Derivation of Ordinary Differential Equation for the Moments

#### Appendix B.4. Constant Number of Agents

#### Appendix B.5. Constant Total Belief

#### Appendix B.6. Ordinary Differential Equation for the Variance

#### Appendix B.7. Exponential Decay of Variance for d = 1

#### Appendix B.8. Variance for an Arbitrary d

## References

- Ramkrishna, D. Population Balances; Academic Press: London, UK, 2000. [Google Scholar]
- Ramkrishna, D.; Singh, M.R. Population Balance Modeling: Current Status and Future Prospects. Annu. Rev. Chem. Biomol. Eng.
**2014**, 5, 123–146. [Google Scholar] [CrossRef] [PubMed] - Sporleder, F.; Borka, Z.; Solsvik, J.; Jakobsen, H.A. On the population balance equation. Rev. Chem. Eng.
**2012**, 28, 149–169. [Google Scholar] [CrossRef] - Nopens, I.; Biggs, C. Advances in population balance modelling. Chem. Eng. Sci.
**2006**, 61, 1–2. [Google Scholar] [CrossRef] - Nopens, I.; Briesen, H.; Ducoste, J. Celebrating a milestone in Population Balance Modeling. Chem. Eng. Sci.
**2009**, 64, 627. [Google Scholar] [CrossRef] - Kumar, S.; Briesen, H. Population balances in the league of mass, momentum, and energy balances. Chem. Eng. Sci.
**2012**, 70, 1–3. [Google Scholar] [CrossRef] - Lorenz, J. Continuous Opinion Dynamics under Bounded Confidence: A Survey. Int. J. Mod. Phys. C
**2007**, 18, 1819–1838. [Google Scholar] [CrossRef] - Sîrbu, A.; Loreto, V.; Servedio, V.D.P.; Tria, F. Participatory Sensing, Opinions and Collective Awareness. In Participatory Sensing, Opinions and Collective Awareness; Loreto, V., Haklay, M., Hotho, A., Servedio, V.D., Stumme, G., Theunis, J., Tria, F., Eds.; Chapter Opinion Dynamics: Models, Extensions and External Effects; Springer: Cham, Swizerland, 2017; pp. 363–401. [Google Scholar]
- Schweitzer, F. Sociophysics. Phys. Today
**2018**, 71, 40–46. [Google Scholar] [CrossRef] - Gargiulo, F.; Lottini, S.; Mazzoni, A. The saturation threshold of public opinion: Are aggressive media campaigns always effective? arXiv, 2008; arXiv:0807.3937. [Google Scholar]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst.
**2000**, 3, 87–98. [Google Scholar] [CrossRef] - Weisbuch, G.; Deffuant, G.; Amblard, F.; Nadal, J.P. Interacting Agents and Continuous Opinions Dynamics. In Heterogenous Agents, Interactions and Economic Performance; Cowan, R., Jonard, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 225–242. [Google Scholar]
- Urbig, D.; Lorenz, J.; Herzberg, H. Opinion Dynamics: The Effect of the Number of Peers Met at Once. J. Artif. Soc. Soc. Simul.
**2008**, 11, 4. [Google Scholar] - Zhang, J.; Hong, Y. Convergence analysis of heterogeneous Deffuant–Weisbuch model. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 1124–1129. [Google Scholar]
- Zhang, J.; Hong, Y. Convergence Analysis of the Long-range Deffuant–Weisbuch Dynamics. IFAC Proc. Vol.
**2013**, 46, 141–146. [Google Scholar] [CrossRef] - Zhang, J.; Chen, G. Convergence rate of the asymmetric Deffuant–Weisbuch dynamics. J. Syst. Sci. Complex.
**2015**, 28, 773–787. [Google Scholar] [CrossRef] - Kayal, S. Unsupervised image segmentation using the Deffuant–Weisbuch model from social dynamics. Signal Image Video Process.
**2017**, 11, 1405–1410. [Google Scholar] [CrossRef] - Carletti, T.; Fanelli, D.; Grolli, S.; Guarino, A. How to make an efficient propaganda. Europhys. Lett.
**2006**, 74, 222. [Google Scholar] [CrossRef] - Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J. Artif. Soc. Soc. Simul.
**2002**, 5, 1–24. [Google Scholar] - Lorenz, J. Heterogeneous bounds of confidence: Meet, discuss and find consensus! Complexity
**2010**, 15, 43–52. [Google Scholar] [CrossRef] - Toscani, G. Kinetic models of opinion formation. Commun. Math. Sci.
**2006**, 4, 481–496. [Google Scholar] [CrossRef] [Green Version] - Boudin, L.; Salvarani, F. A kinetic approach to the study of opinion formation. Math. Model. Numer. Anal.
**2009**, 43, 507–522. [Google Scholar] [CrossRef] [Green Version] - Marchisio, D.L.; Fox, R.O. Computational Models for Polydisperse Particulate and Multiphase Systems; Cambridge Series in Chemical Engineering; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Boudin, L.; Salvarani, F. Modelling opinion formation by means of kinetic equations. In Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences; Naldi, G., Pareschi, L., Toscani, G., Eds.; Birkhäuser Boston: Boston, MA, USA, 2010; pp. 245–270. [Google Scholar] [Green Version]
- Boudin, L.; Monaco, R.; Salvarani, F. Kinetic model for multidimensional opinion formation. Phys. Rev. E
**2010**, 81, 036109. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kou, G.; Zhao, Y.; Peng, Y.; Shi, Y. Multi-Level Opinion Dynamics under Bounded Confidence. PLoS ONE
**2012**, 7, e43507. [Google Scholar] [CrossRef] [PubMed] - Shang, Y. Deffuant model with general opinion distributions: First impression and critical confidence bound. Complexity
**2013**, 19, 38–49. [Google Scholar] [CrossRef] - Antonopoulos, C.G.; Shang, Y. Opinion formation in multiplex networks with general initial distributions. Sci. Rep.
**2018**, 8. [Google Scholar] [CrossRef] [PubMed] - Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ben-Naim, E.; Krapivsky, P.; Redner, S. Bifurcations and patterns in compromise processes. Phys. D
**2003**, 183, 190–204. [Google Scholar] [CrossRef] [Green Version] - Kumar, S.; Ramkrishna, D. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci.
**1996**, 51, 1311–1332. [Google Scholar] [CrossRef] - Chen, Z.; Pruss, J.; Warnecke, H.J. A population balance model for disperse systems: Drop size distribution in emulsion. Chem. Eng. Sci.
**1998**, 53, 1059–1066. [Google Scholar] [CrossRef] - Attarakih, M.; Bart, H.; Faqir, N. Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid–liquid extraction columns. Chem. Eng. Sci.
**2006**, 61, 113–123. [Google Scholar] [CrossRef] [Green Version] - Attarakih, M.; Abu-Khader, M.; Bart, H.J. Modeling and dynamic analysis of a rotating disc contactor (RDC) extraction column using one primary and one secondary particle method (OPOSPM). Chem. Eng. Sci.
**2013**, 91, 180–196. [Google Scholar] [CrossRef] - Bommarius, A.S.; Holzwarth, J.F.; Wang, D.I.C.; Hatton, T.A. Coalescence and Solubilizate Exchange in a Cationic 4-component Reversed Micellar System. J. Phys. Chem.
**1990**, 94, 7232–7239. [Google Scholar] [CrossRef] - Niemann, B.; Rauscher, F.; Adityawarman, D.; Voigt, A.; Sundmacher, K. Microemulsion-assisted precipitation of particles: Experimental and model-based process analysis. Chem. Eng. Process.
**2006**, 45, 917–935. [Google Scholar] [CrossRef] - Voigt, A.; Adityawarman, D.; Sundmacher, K. Size and distribution prediction for nanoparticles produced by microemulsion precipitation: A Monte Carlo simulation study. Nanotechnology
**2005**, 16. [Google Scholar] [CrossRef] [PubMed] - Hatton, T.A.; Bommarius, A.S.; Holzwarth, J.F. Population-dynamics of Small Systems. 1. Instantaneous and Irreversible Reactions in Reversed Micelles. Langmuir
**1993**, 9, 1241–1253. [Google Scholar] [CrossRef] - Natarajan, U.; Handique, K.; Mehra, A.; Bellare, J.R.; Khilar, K.C. Ultrafine metal particle formation in reverse micellar systems: Effects of intermicellar exchange on the formation of particles. Langmuir
**1996**, 12, 2670–2678. [Google Scholar] [CrossRef] - Bandyopadhyaya, R.; Kumar, R.; Gandhi, K.S. Simulation of precipitation reactions in reverse micelles. Langmuir
**2000**, 16, 7139–7149. [Google Scholar] [CrossRef] - Kumar, A.R.; Hota, G.; Mehra, A.; Khilar, K.C. Modeling of nanoparticles formation by mixing of two reactive microemulsions. AICHE J.
**2004**, 50, 1556–1567. [Google Scholar] [CrossRef] - Jain, R.; Mehra, A. Monte Carlo models for nanoparticle formation in two microemulsion systems. Langmuir
**2004**, 20, 6507–6513. [Google Scholar] [CrossRef] [PubMed] - Ethayaraja, M.; Bandyopadhyaya, R. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: Implications for CdS synthesis. J. Am. Chem. Soc.
**2006**, 128, 17102–17113. [Google Scholar] [CrossRef] [PubMed] - Singh, R.; Kumar, S. Effect of mixing on nanoparticle formation in micellar route. Chem. Eng. Sci.
**2006**, 61, 192–204. [Google Scholar] [CrossRef] - Pruim, R. Foundations and Applications of Statistics: An Introduction Using R; Pure and Applied Undergraduate Texts; American Mathematical Society: Providence, RI, USA, 2011; Volume 13. [Google Scholar]
- Lacks, D.J.; Sankaran, R.M. Contact electrification of insulating materials. J. Phys. D
**2011**, 44, 453001. [Google Scholar] [CrossRef] - Landauer, J.; Foerst, P. Triboelectric separation of a starch-protein mixture—Impact of electric field strength and flow rate. Adv. Powder Technol.
**2018**, 29, 117–123. [Google Scholar] [CrossRef] - Prokhorov, A. Delta-function. In Encyclopedia of Mathematics; Kluwer Academic Publisher: Norwell, MA, USA, 2011. [Google Scholar]

**Figure 1.**Illustration of opinion exchange according to the Deffuant–Weisbuch model; darker shades of blue correspond to higher values on the opinion scale x.

**Figure 2.**Time evolution of number density n of opinions for bounded confidence parameter $d=0.5$; results for convergence parameter $\mu =0.5$ (

**a**) and $\mu =0.1$ (

**b**).

**Figure 3.**Time evolution of number density n of opinions for convergence parameter $\mu =0.5$; results shown for bounded confidence parameter $d=0.2$ (

**a**) and $d=0.1$ (

**b**).

**Figure 4.**Variation of initial distribution; used initial distributions with mean value ${\overline{x}}_{0}=0.5$ and several values of variance ${\sigma}_{0}^{2}$ (

**a**); estimated steady state variance over initial variance for three different values of the bounded confidence parameter d (

**b**).

**Figure 5.**Fraction of agents and mean opinion of clusters over variance for three different values of bounded confidence parameter d; points used for the cluster with mean opinion 0.5, circles for the cluster with the maximal fraction of agents, and x for the cluster with the second largest fraction of agents; the dashed line marks initially uniformly distributed belief. Results shown for fraction of agents within clusters (

**a**) and mean opinion of clusters (

**b**).

**Figure 6.**Illustration of concentration exchange between two droplets according to the newly formulated model; darker shades of blue correspond to higher values of the concentration measure x.

**Figure 7.**Number density distribution at ${\sigma}^{2}\left(t\right)=\frac{{\sigma}_{0}^{2}}{10}$ for three different values of the convergence parameter $\mu $; results shown for total volume fraction of each phase ${\varphi}_{1}={\varphi}_{2}$ (

**a**) and ${\varphi}_{1}=3\xb7{\varphi}_{2}$ (

**b**).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kuhn, M.; Kirse, C.; Briesen, H.
Population Balance Modeling and Opinion Dynamics—A Mutually Beneficial Liaison? *Processes* **2018**, *6*, 164.
https://doi.org/10.3390/pr6090164

**AMA Style**

Kuhn M, Kirse C, Briesen H.
Population Balance Modeling and Opinion Dynamics—A Mutually Beneficial Liaison? *Processes*. 2018; 6(9):164.
https://doi.org/10.3390/pr6090164

**Chicago/Turabian Style**

Kuhn, Michael, Christoph Kirse, and Heiko Briesen.
2018. "Population Balance Modeling and Opinion Dynamics—A Mutually Beneficial Liaison?" *Processes* 6, no. 9: 164.
https://doi.org/10.3390/pr6090164