Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Strains, Preparation and Quantification
2.3. TiO2/SiO2-BGT
2.4. TiO2-LDPE Pellets
2.5. Characterization of Films
2.6. Solar CPC Photo-Reactor
2.7. Solar Photocatalytic Disinfection Experiments
3. Results and Discussion
3.1. Characterization of TiO2/SiO2-BGT
3.2. TiO2-LDPE Pellets
3.3. Effects of Solar Radiation and Mechanical Stress on E. coli and Total Bacteria
3.4. Photocatalytic Inactivation of Bacteria by Supported TiO2 Films
3.5. TiO2-LDPE Pellets Efficiency at Different Initial Bacterial Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanao, M.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water. Sol. Energy 2012, 86, 619–625. [Google Scholar] [CrossRef]
- Rincón, A.-G.; Pulgarin, C. Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Catal. Today 2007, 122, 128–136. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Booshehri, A.Y.; Polo-Lopez, M.I.; Castro-Alférez, M.; Hea, P.; Xu, R.; Rong, W.; Malato, S.; Férnandez-Ibañez, P. Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents. Catal. Today 2017, 281, 124–134. [Google Scholar] [CrossRef]
- Cruz-Ortiz, B.R.; Hamilton, J.W.J.; Pablos, C.; Díaz-Jiménez, L.; Cortés-Hernández, P.F.-I.D.; Sharma, P.K.; Castro-Alférez, M.; Férnandez-Ibañez, P.; Dunlop, P.S.M.; Byrne, J.A. Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chem. Eng. J. 2017, 316, 179–186. [Google Scholar] [CrossRef]
- Castro-Alférez, M.; Polo-López, M.I.; Fernández-Ibáñez, P. Intracellular mechanisms of solar water disinfection. Sci. Rep. 2016, 6, 38145. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Huang, Z.; Maness, P.-C.; Blake, D.M.; Wolfrum, E.J.; Smolinski, S.L.; Jacoby, W.A. Bactericidal mode of titanium dioxide photocatalysis. J. Photochem. Photobiol. A Chem. 2000, 130, 163–170. [Google Scholar] [CrossRef]
- Gelover, S.; Gómez, L.A.; Reyes, K.; Teresa Leal, M. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res. 2006, 40, 3274–3280. [Google Scholar] [CrossRef] [PubMed]
- Gelover, S.; Mondragón, P.; Jiménez, A. Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. J. Photochem. Photobiol. A Chem. 2004, 16, 241–246. [Google Scholar] [CrossRef]
- Pozzo, R.L.; Baltanás, M.A.; Cassano, A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today 1997, 39, 219–231. [Google Scholar] [CrossRef]
- Portela, R.; Sánchez, B.; Coronado, J.M.; Candal, R.; Suárez, S. Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal. Catal. Today 2007, 129, 223–230. [Google Scholar] [CrossRef]
- Turki, A.; Kochkar, H.; García-Fernández, I.; Polo-López, M.I.; Ghorbel, A.; Guillard, C.; Berhault, G.; Fernández-Ibáñez, P. Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled morphology—Formic acid effect. Catal. Today 2013, 209, 147–152. [Google Scholar] [CrossRef]
- Mejía, M.I.; Marín, J.M.; Restrepo, G.; Rios, L.A.; Pulgarín, C.; Kiwi, J. Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Appl. Catal. B Environ. 2010, 94, 166–172. [Google Scholar] [CrossRef]
- Grieken, R.V.; Marugán, J.; Sordo, C.; Pablos, C. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal. Today 2009, 144, 48–54. [Google Scholar] [CrossRef]
- Alrousan, D.M.A.; Polo-López, M.I.; Dunlop, P.S.M.; Fernández-Ibáñez, P.; Byrne, J.A. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl. Catal. B Environ. 2012, 128, 126–134. [Google Scholar] [CrossRef]
- Mallak, M.; Bockmeyer, M.; Löbmann, P. Liquid phase deposition of TiO2 on glass: Systematic comparison to films prepared by sol–gel processing. Thin Solid Films 2007, 515, 8072–8077. [Google Scholar] [CrossRef]
- Song, M.Y.; Park, Y.K.; Jurng, J. Direct coating of V2O5/TiO2 nanoparticles onto glass beads by chemical vapor deposition. Power Technol. 2012, 231, 135–140. [Google Scholar] [CrossRef]
- Velásquez, J.; Valencia, S.; Rios, L.; Restrepo, G.; Marín, J. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method. Chem. Eng. J. 2012, 203, 398–405. [Google Scholar] [CrossRef]
- Giovannetti, R.; D’Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Miniucci, M.; Di Cicco, A. Visible light photoactivity of polypropylene coated Nano-TiO2 for dyes degradation in water. Sci. Rep. 2015, 5, 17801. [Google Scholar] [CrossRef] [PubMed]
- Rubio, D.; Casanueva, J.F.; Nebot, E. Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/ TiO2) as seawater disinfection technology. J. Photochem. Photobiol. A Chem. 2013, 271, 16–23. [Google Scholar] [CrossRef]
- Yu, H.; Song, L.; Hao, Y.; Lu, N.; Quan, X.; Chen, S.; Zhang, Y.; Feng, Y. Fabrication of pilot-scale photocatalytic disinfection device by installing TiO2 coated helical support into UV annular reactor for strengthening sterilization. Chem. Eng. J. 2016, 283, 1506–1513. [Google Scholar] [CrossRef]
- Ratova, M.; Mills, A. Antibacterial titania-based photocatalytic extruded plastic films. J. Photochem. Photobiol. A Chem. 2015, 299, 159–165. [Google Scholar] [CrossRef]
- Rtimi, S.; Sanjines, R.; Andrzejczuk, M.; Pulgarin, C.; Kulik, A.; Kiwi, J. Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity. Surf. Coat. Technol. 2014, 254, 333–343. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Hung, Y.C. Photocatalytic TiO2 coating of plastic cutting board to prevent microbial cross-contamination. Food Control 2017, 77, 88–95. [Google Scholar] [CrossRef]
- Yañez, D.; Guerrero, S.; Lieberwirth, I.; Ulloa, M.T.; Gomez, T.; Rabagliati, F.M.; Zapata, P.A. Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites. Appl. Catal. A Gen. 2015, 489, 255–261. [Google Scholar] [CrossRef]
- Bahloul, W.; Mélis, F.; Bounor-Legaré, V.; Cassagnau, P. Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol–gel method. Mater. Chem. Phys. 2012, 134, 399–406. [Google Scholar] [CrossRef]
- Marín, J.M.; Fidelgranda, C.; Galeano, L.; Rios, L.A.; Restrepo, G. Impregnación de TiO2 sobre borosilicato por el método sol-gel usando inmersión a velocidad controlada. Sci. Tech. 2007, 2, 441–446. [Google Scholar]
- García-Fernández, I.; Polo-López, M.I.; Oller, I.; Fernández-Ibáñez, P. Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Appl. Catal. B Environ. 2012, 121–122, 20–29. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J. Hazard. Mater. 2012, 227–228, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Safajou, H.; Khojasteh, H.; Salavati-Niasari, M.; Mortazavi-Derazkola, S. Enhanced photocatalytic degradation of dyes over graphene/Pd/ TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 2017, 498, 423–432. [Google Scholar] [CrossRef] [PubMed]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and raman characterization of TiO2 nanoparticles coated with Polyethylene Glycol as carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Fischer, E.W. Effect of annealing and temperature on the morphological structure of polymers. Pure Appl. Chem. 1972, 31, 113–132. [Google Scholar] [CrossRef]
- Matsuzawa, S.; Maneerat, C.; Hayata, Y.; Hirakawa, T.; Negishi, N.; Sano, T. Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase. Appl. Catal. B Environ. 2008, 83, 39–45. [Google Scholar] [CrossRef]
- Sordo, C.; Van Grieken, R.; Marugán, J.; Fernández-Ibáñez, P. Solar photocatalytic disinfection with immobilised TiO2 at pilot-plant scale. Water Sci. Technol. 2010, 61, 507. [Google Scholar] [CrossRef] [PubMed]
- Hincapié, M.; Balaguera, A.; Botero, L.; Sánchez, C.; Restrepo, G.; Marín, J. Purificación del agua por fotocatálisis. In Even. X Jornadas Investig. Univ. Medellín INNOVACIÓN Y Transf. Conoc. EN Ing.; Sello Editorial Universidad de MedellSín: Medellín, Colombia, 2014; pp. 75–92. [Google Scholar]
- Marugán, J.; Grieken, R.V.; Sordo, C.; Cruz, C. Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl. Catal. B Environ. 2008, 82, 27–36. [Google Scholar] [CrossRef]
- Helali, S.; Polo-López, M.I.; Fernández-Ibáñez, P.; Ohtani, B.; Amano, F.; Malato, S.; Guillard, C. Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A Chem. 2014, 276, 31–40. [Google Scholar] [CrossRef]
- Rincón, A.G.; Pulgarin, C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B Environ. 2004, 49, 99–112. [Google Scholar] [CrossRef]
- Craik, S.A.; Weldon, D.; Finch, G.R.; Bolton, J.R.; Belosevic, M. Inactivation of cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation. Water Res. 2001, 35, 1387–1398. [Google Scholar] [CrossRef]
Hours of Matrix Silica Aging | Atomic % Ti | Atomic % Si |
---|---|---|
24 | 1.08 | 41.49 |
36 | 1.49 | 32.39 |
48 | 1.13 | 39.77 |
60 | 1.10 | 40.40 |
TiO2-LDPE Pellets | % Weight Loss | mg TiO2/g LDPE Pellets |
---|---|---|
1 layer | 0.1836 | 0.2374 |
2 layers | 0.1974 | 0.1495 |
3 layers | 0.2253 | 0.1412 |
4 layers | 0.2679 | 0.1080 |
5 layers | 0.2884 | 0.0914 |
Treatment | TiO2 (mg·L−1) | Conc. (CFU·mL−1) | k (L·kJ−1) | Shoulder Length (kJ·L−1) | Log (Nres) | R2 | Kinetic Model |
---|---|---|---|---|---|---|---|
Total Bacteria | |||||||
Photo-inactivation | 0 | 105 | 0.22 ± 0.03 | 1.56 ± 0.01 | – | 0.966 | Shoulder + Log Linear |
TiO2-suspended | 50 | 105 | 0.47 ± 0.03 | – | – | 0.967 | Log Linear |
TiO2/SiO2-BGT | 59 | 105 | 0.37 ± 0.01 | 3.27 ± 0.02 | 1.17 ± 0.02 | 0.997 | Shoulder + Log Lineal + Tail |
TiO2-LDPE pellets | 52 | 105 | 0.49 ± 0.02 | – | – | 0.970 | Log Linear |
E. coli | |||||||
Photo-inactivation | 0 | 105 | 0.40 ± 0.10 | 1.56 ± 0.01 | – | 0.946 | Shoulder + Log Linear |
TiO2-suspended | 50 | 105 | 1.50 ± 0.10 | – | – | 0.923 | Log Linear |
TiO2/SiO2-BGT | 59 | 105 | 0.46 ± 0.05 | – | – | 0.954 | Log Linear |
TiO2-LDPE pellets | 52 | 105 | 0.90 ± 0.04 | – | – | 0.910 | Log Linear |
Treatment | TiO2 (mg·L−1) | Concentration (CFU·mL−1) | k (L·kJ−1) | R2 | Kinetic Model |
---|---|---|---|---|---|
Total Bacteria | |||||
TiO2-LDPE pellets | 52 | 105 | 0.49 ± 0.02 | 0.970 | Log Linear |
TiO2-LDPE pellets | 52 | 103 | 0.39 ± 0.03 | 0.974 | Log Linear |
TiO2-LDPE pellets | 52 | 101 | 0.22 ± 0.01 | 0.977 | Log Linear |
E. coli | |||||
TiO2-LDPE pellets | 52 | 105 | 0.90 ± 0.04 | 0.891 | Log Linear |
TiO2-LDPE pellets | 52 | 103 | 0.89 ± 0.08 | 0.962 | Log Linear |
TiO2-LDPE pellets | 52 | 101 | 0.38 ± 0.10 | 0.936 | Log linear |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguas, Y.; Hincapié, M.; Sánchez, C.; Botero, L.; Fernández-Ibañez, P. Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates. Processes 2018, 6, 137. https://doi.org/10.3390/pr6090137
Aguas Y, Hincapié M, Sánchez C, Botero L, Fernández-Ibañez P. Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates. Processes. 2018; 6(9):137. https://doi.org/10.3390/pr6090137
Chicago/Turabian StyleAguas, Yelitza, Margarita Hincapié, Camilo Sánchez, Liliana Botero, and Pilar Fernández-Ibañez. 2018. "Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates" Processes 6, no. 9: 137. https://doi.org/10.3390/pr6090137
APA StyleAguas, Y., Hincapié, M., Sánchez, C., Botero, L., & Fernández-Ibañez, P. (2018). Photocatalytic Inactivation of Enterobacter cloacae and Escherichia coli Using Titanium Dioxide Supported on Two Substrates. Processes, 6(9), 137. https://doi.org/10.3390/pr6090137