# Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

**Figure 2.**ErbB signaling pathway through a network of reactions with rates that are proportional to individual reactant concentrations [22]. This reaction graph is a simpler version of the ErbB signaling pathway than Chen et al. [20] (used in this study) due to the impracticality of displaying a larger model.

#### 1.1. Sequential Gradient-based Approaches

#### 1.2. Simultaneous Gradient-based Approaches

#### 1.3. Parameter Optimization

## 2. Simulation and Optimization of DAE Systems

#### 2.1. Simulation of DAE Systems

**Figure 4.**DAEs are discretized and solved over a time horizon with System States (x) determined from the equations and Inputs or Parameters (u) that may discontinuously adjust at points in the simulated time horizon.

#### 2.2. Optimization of DAE Systems

**Figure 5.**Overview of sequential (

**left**) and simultaneous (right) approaches to optimize DAE systems.

## 3. Hybrid Simultaneous and Sequential DAE Optimization

**Figure 6.**Overview of the hybrid approach to initialize and optimize DAE systems with initialization on the left followed by optimization on the right.

#### 3.1. Model Parameter Estimation with HIV Case Study

**Figure 7.**The parameters of the HIV model are adjusted to fit synthetic virus concentrations from simulated lab data.

**Figure 8.**Results of the HIV model parameter estimation, including predicted, actual, and measured virus (V), infected cells (I), and healthy cells (H).

**Figure 9.**Lower block triangular form with blocks of variables and equations that are solved successively and independently.

#### 3.2. Systems Biology: ErbB Signaling Pathway Model Parameter Estimation

#### 3.2.1. Improved Convergence through Model Transformation

#### 3.2.2. Solver Performance on 341 Benchmark Problems

**Figure 10.**Benchmark solver results for biological models comparing six solvers over 341 curated models from the biomodels database.

#### 3.2.3. Unobservable Parameters

#### 3.3. Results of ErbB Parameter Optimization

**Figure 11.**Lower block triangular form of ErbB model with original sparsity on the left and rearranged sparsity with successive blocks of variables and equations that are solved successively.

Parameters | Hybrid | Simultaneous |
---|---|---|

1 | 33.2 s | 30.6 s |

3 | 50.4 s | 45.4 s |

5 | 41.5 s | 67.8 s |

10 | 75.3 s | failure |

#### Post-Processing Analysis and Parameter Sensitivity

**Figure 13.**Parameter sensitivity over the time horizon (subplots

**a**and

**b**) and singular value magnitudes for principal parameter search directions (subplots

**c**and

**d**). The relative levels of the singular values show that some parameters have a strong effect on the predictions while others have a minimal effect or are co-linear and do not need to be estimated.

## 4. Discussion

## 5. Conclusions and Future Direction

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Adiwijaya, B.S.; Herrmann, E.; Hare, B.; Kieffer, T.; Lin, C.; Kwong, A.D.; Garg, V.; Randle, J.C.R.; Sarrazin, C.; Zeuzem, S.; et al. A Multi-Variant, Viral Dynamic Model of Genotype 1 HCV to Assess the in vivo Evolution of Protease-Inhibitor Resistant Variants. PLoS Comput. Biol.
**2010**, 6, e1000745. [Google Scholar] [CrossRef] [PubMed] - Hucka, M.; Finney, A.; Sauro, H.M.; Bolouri, H.; Doyle, J.C.; Kitano, H.; Arkin, A.P.; Bornstein, B.J.; Bray, D.; Cornish-Bowden, A.; et al. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics
**2003**, 19, 524–531. [Google Scholar] [CrossRef] [PubMed] - Biegler, L.T. An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process.
**2007**, 46, 1043–1053. [Google Scholar] [CrossRef] - Leppävuori, J.T.; Domach, M.M.; Biegler, L.T. Parameter Estimation in Batch Bioreactor Simulation Using Metabolic Models: Sequential Solution with Direct Sensitivities. Ind. Eng. Chem. Res.
**2011**, 50, 12080–12091. [Google Scholar] [CrossRef] - Hedengren, J.D.; Shishavan, R.A.; Powell, K.M.; Edgar, T.F. Nonlinear modeling, estimation and predictive control in APMonitor. Comput. Chem. Eng.
**2014**, 70, 133–148. [Google Scholar] [CrossRef] - Spivey, B.; Hedengren, J.; Edgar, T. Constrained Nonlinear Estimation for Industrial Process Fouling. Ind. Eng. Chem. Res.
**2010**, 49, 7824–7831. [Google Scholar] [CrossRef] - Jacobsen, L.; Spivey, B.; Hedengren, J. Model Predictive Control with a Rigorous Model of a Solid Oxide Fuel Cell. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 3747–3752.
- Sun, L.; Hedengren, J.D.; Beard, R.W. Optimal Trajectory Generation Using Model Predictive Control for Aerially Towed Cable Systems. J. Guid. Control Dyn.
**2014**, 37, 525–539. [Google Scholar] [CrossRef] - Sun, L.; Castagno, J.; Hedengren, J.D.; Beard, R.W. Parameter Estimation for Towed Cable Systems Using Moving Horizon Estimation. IEEE Trans. Aerosp. Electron. Syst.
**2015**, in press. [Google Scholar] [CrossRef] - Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Plant-level Dynamic Optimization of Cryogenic Carbon Capture with Conventional and Renewable Power Sources. Appl. Energy
**2015**, 149, 354–366. [Google Scholar] [CrossRef] - Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L.; Kennington, L. Investigating the Impact of Cryogenic Carbon Capture on the Performance of Power Plants. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015.
- Powell, K.M.; Hedengren, J.D.; Edgar, T.F. Dynamic optimization of a hybrid solar thermal and fossil fuel system. Solar Energy
**2014**, 108, 210–218. [Google Scholar] [CrossRef] - Powell, K.; Hedengren, J.; Edgar, T. Dynamic Optimization of a Solar Thermal Energy Storage System over a 24 Hour Period Using Weather Forecasts. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 2952–2957.
- Nielsen, I. Modeling and Control of Friction Stir Welding in 5 cm thick Copper Canisters. Master’s Thesis, The Link Oping University, Link Oping, Sweden, 2012. [Google Scholar]
- Hallac, B.; Kayvanloo, K.; Hedengren, J.; Hecker, W.; Argyle, M. An Optimized Simulation Model for Iron-Based Fischer-Tropsch Catalyst Design: Transfer Limitations as Functions of Operating and Design Conditions. Chem. Eng. J.
**2015**, 263, 268–279. [Google Scholar] [CrossRef] - Biegler, L.T.; Cervantes, A.M.; Wachter, A. Advances in simultaneous strategies for dynamic process optimization. Chem. Eng. Sci.
**2002**, 57, 575–593. [Google Scholar] [CrossRef] - Renfro, J.; Morshedi, A.; Asbjornsen, O. Simultaneous optimization and solution of systems described by differential/algebraic equations. Comput. Chem. Eng.
**1987**, 11, 503–517. [Google Scholar] [CrossRef] - Chis, O.T.; Banga, J.R.; Balsa-Canto, E. Structural identifiability of systems biology models: A critical comparison of methods. PLoS ONE
**2011**, 6, e27755. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics
**2009**, 25, 1923–1929. [Google Scholar] [CrossRef] [PubMed] - Chen, W.W.; Schoeberl, B.; Jasper, P.J.; Niepel, M.; Nielsen, U.B.; Lauffenburger, D.A.; Sorger, P.K. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol.
**2009**, 5, 239. [Google Scholar] [CrossRef] [PubMed] - Kühn, C.; Wierling, C.; Kühn, A.; Klipp, E.; Panopoulou, G.; Lehrach, H.; Poustka, A.J. Monte carlo analysis of an ode model of the sea urchin endomesoderm network. BMC Syst. Biol.
**2009**, 3, 83. [Google Scholar] [CrossRef] [PubMed] - Birtwistle, M.R.; Hatakeyama, M.; Yumoto, N.; Ogunnaike, B.A.; Hoek, J.B.; Kholodenko, B.N. Ligand-dependent responses of the ErbB signaling network: Experimental and modeling analyses. Mol. Syst. Biol.
**2007**, 3, 144. [Google Scholar] [CrossRef] [PubMed] - Barton, P.I.; Allgor, R.J.; Feehery, W.F.; Galán, S. Dynamic optimization in a discontinuous world. Ind. Eng. Chem. Res.
**1998**, 37, 966–981. [Google Scholar] [CrossRef] - Vassiliadis, V.; Sargent, R.; Pantelides, C. Solution of a class of multistage dynamic optimization problems. part one-algorithmic framework. Ind. Eng. Chem. Res.
**1994**, 33, 2115–2123. [Google Scholar] - Vassiliadis, V.; Sargent, R.; Pantelides, C. Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind. Eng. Chem. Res.
**1994**, 33, 2123–2133. [Google Scholar] [CrossRef] - Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; A Pergamon Press Book; Brown, D.E., Translator; The Macmillan Co.: New York, NY, USA, 1964; p. 338. [Google Scholar]
- Bryson, A.E. Applied Optimal Control: Optimization, Estimation and Control; CRC Press: Boca Raton, FL, USA, 1975. [Google Scholar]
- Cervantes, A.; Biegler, L.T. Optimization strategies for dynamic systemsOptimization Strategies for Dynamic Systems. In Encyclopedia of Optimization; Springer: Berlin, Germany, 2001; pp. 1886–1897. [Google Scholar]
- Ascher, U.M.; Petzold, L.R. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations; SIAM: Philadelphia, PA, USA, 1998; Volume 61. [Google Scholar]
- Flores-Tlacuahuac, A.; Biegler, L.T.; Saldívar-Guerra, E. Dynamic optimization of HIPS open-loop unstable polymerization reactors. Ind. Eng. Chem. Res.
**2005**, 44, 2659–2674. [Google Scholar] [CrossRef] - Morrison, D.D.; Riley, J.D.; Zancanaro, J.F. Multiple shooting method for two-point boundary value problems. Commun. ACM
**1962**, 5, 613–614. [Google Scholar] [CrossRef] - Leineweber, D. Efficient Reduced SQP Methods for the Optimization of Chemical Processes Described by Large Sparse DAE Models; Fortschritt-Berichte VDI.: Verfahrenstechnik, VDI-Verlag, Dusseldorf, Germany, 1999. [Google Scholar]
- Deuflhard, P.; Hairer, E. Numerical treatment of inverse problems in differential and integral equations. In Proceedings of an International Workshop, Heidelberg, Federal Republic of Germany, 30 August–3 September 1982; Birkhäuser Verlag AG: Basel, Switzerland, 1983; Volume 2. [Google Scholar]
- Bock, H.G. Recent Advances in Parameteridentification Techniques for Ode; Springer: Berlin, Germany, 1983. [Google Scholar]
- Bock, H.G.; Plitt, K.J. A multiple shooting algorithm for direct solution of optimal control problems. In Proceedings of the IFAC World Congress, Budapest, Hungary, 2–6 July 1984.
- Betts, J.T.; Huffman, W.P. Application of sparse nonlinear programming to trajectory optimization. J. Guid. Control Dyn.
**1992**, 15, 198–206. [Google Scholar] [CrossRef] - Cervantes, A.M.; Wächter, A.; Tütüncü, R.H.; Biegler, L.T. A reduced space interior point strategy for optimization of differential algebraic systems. Comput. Chem. Eng.
**2000**, 24, 39–51. [Google Scholar] [CrossRef] - Reddien, G. Collocation at Gauss points as a discretization in optimal control. SIAM J. Control Optim.
**1979**, 17, 298–306. [Google Scholar] [CrossRef] - Cuthrell, J.E.; Biegler, L.T. Simultaneous optimization and solution methods for batch reactor control profiles. Comput. Chem. Eng.
**1989**, 13, 49–62. [Google Scholar] [CrossRef] - Hager, W.W. Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math.
**2000**, 87, 247–282. [Google Scholar] [CrossRef] - Kameswaran, S.; Biegler, L.T. Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl.
**2008**, 41, 81–126. [Google Scholar] [CrossRef] - Kameswaran, S.; Biegler, L.T. Simultaneous dynamic optimization strategies: Recent advances and challenges. Comput. Chem. Eng.
**2006**, 30, 1560–1575. [Google Scholar] [CrossRef] - Kameswaran, S.; Biegler, L.T. Advantages of nonlinear-programming-based methodologies for inequality path-constrained optimal control problems-a numerical study. SIAM J. Sci. Comput.
**2008**, 30, 957–981. [Google Scholar] [CrossRef] - Belts, J.T.; Campbeltf, S.L. Discretize then optimize. Mathe. Ind.
**2005**, 121, 140. [Google Scholar] - Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming; SIAM: Philadelphia, PA, USA, 2010; Volume 19. [Google Scholar]
- Moles, C.G.; Mendes, P.; Banga, J.R. Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res.
**2003**, 13, 2467–2474. [Google Scholar] [CrossRef] [PubMed] - Eghtesadi, Z.; McAuley, K.B. Mean Square Error Based Method for Parameter Ranking and Selection to Obtain Accurate Predictions at Specified Operating Conditions. Ind. Eng. Chem. Res.
**2014**, 53, 6033–6046. [Google Scholar] [CrossRef] - Lillacci, G.; Khammash, M. Parameter estimation and model selection in computational biology. PLoS Comput. Biol.
**2010**, 6, e1000696. [Google Scholar] [CrossRef] [PubMed] - Word, D.P.; Young, J.K.; Cummings, D.A.T.; Iamsirithaworn, S.; Laird, C.D. Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models. PLoS ONE
**2013**, 8, e74208. [Google Scholar] [CrossRef] [PubMed] - Gutenkunst, R.N.; Waterfall, J.J.; Casey, F.P.; Brown, K.S.; Myers, C.R.; Sethna, J.P. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol.
**2007**, 3, 1871–1878. [Google Scholar] [CrossRef] [PubMed] - Rodriguez-Fernandez, M.; Rehberg, M.; Kremling, A.; Banga, J.R. Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems. BMC Syst. Biol.
**2013**, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Coelho, F.C.; Codeço, C.T.; Gomes, M.G.M. A Bayesian framework for parameter estimation in dynamical models. PLoS ONE
**2011**, 6, e19616. [Google Scholar] [CrossRef] [PubMed] - Chung, C.B. Sensitivity Behavior Analysis in Distributed Parameter-Estimation. Korean J. Chem. Eng.
**1991**, 8, 240–247. [Google Scholar] [CrossRef] - Petzold, L.R. Description of DASSL: A Differential/algebraic System Solver; Technical Report; Sandia National Labs.: Livermore, CA, USA, 1982. [Google Scholar]
- Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.; Woodward, C.S. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM Trans. Math. Softw.
**2005**, 31, 363–396. [Google Scholar] [CrossRef] - Cizniar, M.; Salhi, D.; Fikar, M.; Latifi, M. A MATLAB Package for Orthogonal Collocations on Finite Elements in Dynamic Optimisation. In Proceedings of the 15th International Conference Process Control ’05, Bratislava, Slovakia, 7–10 June 2005.
- Houska, B.; Ferreau, H.J.; Diehl, M. ACADO toolkit—An open-source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods
**2011**, 32, 298–312. [Google Scholar] [CrossRef] - Piela, P.; Westerberg, A.; Westerberg, K.; Epperly, T. ASCEND: An object-oriented computer environment for modeling and analysis: The modeling language. Comput. Chem. Eng.
**1991**, 15, 53–72. [Google Scholar] [CrossRef] - Tummescheit, H.; Gäfvert, M.; Bergdahl, T.; Årzén, K.E.; Åkesson, J. Modeling and optimization with Optimica and JModelica.org Languages and tools for solving large-scale dynamic optimization problems. Comput. Chem. Eng.
**2010**, 34, 1737–1749. [Google Scholar] - Simon, L.; Nagy, Z.; Hungerbuehler, K. Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon. In Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences; Springer-Verlag: Berlin, Germany; Heidelberg, Germany, 2009; pp. 531–539. [Google Scholar]
- Nagy, Z.; Mahn, B.; Franke, R.; Allgöwer, F. Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor. Control Eng. Pract.
**2007**, 15, 839–850. [Google Scholar] [CrossRef] - Biegler, L.T. An overview of simultaneous strategies for dynamic optimization. Chem. Eng. Process.
**2007**, 46, 1043–1053. [Google Scholar] [CrossRef] - Biegler, L.; Campbell, S.; Mehrmann, V. Control and Optimization with Differential-Algebraic Constraints; SIAM: Philadelphia, PA, USA, 2012. [Google Scholar]
- Carey, G.; Finlayson, B. Othogonal Collocation on Finite Elements. Chem. Eng. Sci.
**1975**, 30, 587–596. [Google Scholar] [CrossRef] - Liebman, M.; Edgar, T.; Lasdon, L. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques. Comput. Chem. Eng.
**1992**, 16, 963–986. [Google Scholar] [CrossRef] - Albuquerque, J.S.; Biegler, L.T. Decomposition algorithms for on-line estimation with nonlinear models. Comput. Chem. Eng.
**1995**, 19, 1031–1039. [Google Scholar] [CrossRef] - Cervantes, A.; Biegler, L. Large scale DAE optimization using simultaneous nonlinear programming formulations. SIAM J. Numer. Anal.
**1998**, 44, 1038–1050. [Google Scholar] - Míguez, J. Analysis of a Sequential Monte Carlo Method for Optimization in Dynamical Systems. Signal Process.
**2010**, 90, 1609–1622. [Google Scholar] [CrossRef] - Binder, T.; Blank, L.; Bock, H.; Burlisch, R.; Dahmen, W.; Diehl, M.; Kronseder, T.; Marquardt, W.; Schlöder, J.; Stryk, O. Introduction to model based optimization of chemical processes on moving horizons. In Online Optimization of Large Scale Systems; Springer-Verlag: Berlin, Germany, 2001; pp. 295–339. [Google Scholar]
- Diehl, M.; Bock, H.G.; Schlöder, J.P.; Findeisen, R.; Nagy, Z.; Allgöwer, F. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control
**2002**, 12, 577–585. [Google Scholar] [CrossRef] - Assassa, F.; Marquardt, W. Dynamic optimization using adaptive direct multiple shooting. Comput. Chem. Eng.
**2014**, 60, 242–259. [Google Scholar] [CrossRef] - Hedengren, J. APMonitor Modeling Language and Optimization Suite. Available online: http://APMonitor.com (accessed on 16 September 2015).
- Petzold, L.; Li, S.; Cao, Y.; Serban, R. Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng.
**2006**, 30, 1553–1559. [Google Scholar] [CrossRef] - Biegler, L.; Yang, X.; Fischer, G. Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization. J. Process Control
**2015**, 30, 104–116. [Google Scholar] [CrossRef] - Hong, W.; Wang, S.; Li, P.; Wozny, G.; Biegler, L. A quasi-sequential approach to large-scale dynamic optimization problems. AIChE J.
**2006**, 52, 255–268. [Google Scholar] [CrossRef] - Zavala, V.; Biegler, L. Nonlinear Programming Strategies for State Estimation and Model Predictive Control. In Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences; Magni, L., Raimondo, D., Allgöwer, F., Eds.; Springer: Berlin, Germany, 2009; Volume 384, pp. 419–432. [Google Scholar]
- Nowak, M.; May, R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology; Oxford university Press: Oxford, UK, 2000. [Google Scholar]
- Hedengren, J. Processes Examples with HIV and ErbB Signaling in the APMonitor Modeling Language. Available online: https://github.com/APMonitor/processes (accessed on 16 September 2015).
- Word, D.P.; Young, J.K.; Cummings, D.A.; Iamsirithaworn, S.; Laird, C.D. Interior-Point Methods for Estimating Seasonal Parameters in Discrete-Time Infectious Disease Models. PLoS ONE
**2013**, 8, e74208. [Google Scholar] [CrossRef] [PubMed] - Safdarnejad, S.M.; Hedengren, J.D.; Lewis, N.R.; Haseltine, E.L. Initialization strategies for optimization of dynamic systems. Comput. Chem. Eng.
**2015**, 78, 39–50. [Google Scholar] [CrossRef] - Hedengren, J. SBML Converter for the APMonitor Modeling Language. Available online: http://xps.apmonitor.com/wiki/index.php/Main/SBML (accessed on 18 September 2015).
- Cho, H.S.; Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science
**2002**, 297, 1330–1333. [Google Scholar] [CrossRef] [PubMed] - Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer
**2005**, 5, 341–354. [Google Scholar] [CrossRef] [PubMed] - Anderson, J.; Chang, Y.C.; Papachristodoulou, A. Model decomposition and reduction tools for large-scale networks in systems biology. Automatica
**2011**, 47, 1165–1174. [Google Scholar] [CrossRef] - Hedengren, J.; Mojica, J.; Cole, W.; Edgar, T. APOPT: MINLP Solver for Differential and Algebraic Systems with Benchmark Testing. In Proceedings of the INFORMS National Meeting, Phoenix, AZ, USA, 14–17 October 2012.
- Wächter, A.; Biegler, L. On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math. Program.
**2006**, 106, 25–57. [Google Scholar] [CrossRef] - Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim.
**2002**, 12, 979–1006. [Google Scholar] [CrossRef] - Klema, V.; Laub, A.J. The singular value decomposition: Its computation and some applications. IEEE Trans. Autom. Control
**1980**, 25, 164–176. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lewis, N.R.; Hedengren, J.D.; Haseltine, E.L.
Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities. *Processes* **2015**, *3*, 701-729.
https://doi.org/10.3390/pr3030701

**AMA Style**

Lewis NR, Hedengren JD, Haseltine EL.
Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities. *Processes*. 2015; 3(3):701-729.
https://doi.org/10.3390/pr3030701

**Chicago/Turabian Style**

Lewis, Nicholas R., John D. Hedengren, and Eric L. Haseltine.
2015. "Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities" *Processes* 3, no. 3: 701-729.
https://doi.org/10.3390/pr3030701