Temporal-Spatial Waveform Fault Attention Design for PEMFC Fault Diagnosis via Permutation Feature Importance in Smart Terminal
Abstract
1. Introduction
- (1)
- Classifying the data into five categories using a hierarchical clustering algorithm and incorporating data enhancement techniques to effectively improve model performance.
- (2)
- Constructing a WFA by employing amplitude attention and temporal difference attention to accurately extract temporal-spatial features and provide discriminative information for fault diagnosis.
- (3)
- Utilizing a CNN-BiLSTM-WFA model to achieve high-precision fault identification under small sample sizes and unknown conditions.
- (4)
- Evaluating parameter contribution through PFI, screening key features, enhancing model interpretability, and reducing sensor redundancy and computational cost.
2. Model and Battery Dataset Analysis
2.1. Fault Diagnosis for PEMFC System
2.2. Data Analysis
2.2.1. Data Classification
2.2.2. Data Pre-Processing
- (1)
- Data enhancement
- (2)
- Data standardization
3. Methodologies
3.1. Convolutional Neural Network
3.2. Bi-Directional Long Short-Term Memory Network
3.3. Waveform Fault Attention
3.4. Permutation Feature Importance
3.5. CNN-BiLSTM-WFA
4. Results and Discussion
4.1. Experiment Settings
4.2. Comparison Experiments with Traditional Machine Learning Models
4.3. Model Stability Validation
4.4. Illustration of Permutation Feature Importance Algorithm
4.5. Parameter Sensitivity Analysis
4.6. Sensitivity Analysis to Real-World Noises
5. Conclusions
- (1)
- In this study, an innovative WFA mechanism is proposed. By integrating amplitude attention and temporal difference attention and then completing multi-scale cross-temporal feature fusion through a multi-head attention module, the mechanism effectively extracts fault features. Comparative experiments demonstrate that CNN-BiLSTM-WFA model equipped with WFA mechanism can achieve 100% diagnostic precision, recall, and F-score for five types of operating conditions. Compared with the traditional self-attention mechanism, the overall diagnostic precision is improved by 14%, providing an efficient feature extraction scheme for fault identification of PEMFC under complex operating conditions.
- (2)
- Stability analysis experiments show that the diagnostic precision of the CNN-BiLSTM-WFA model ranges from 97% to 100%, with an average diagnostic precision of 98.3%, which ensures the reliability of the model in practical engineering scenarios with limited data.
- (3)
- By quantifying the feature contribution of 20 monitoring sensors using PFI, this study identifies the core sensitive sensors for fault diagnosis. This not only effectively eliminates sensor redundancy and reduces the hardware cost of the monitoring system but also enhances the interpretability of the model.
- (4)
- A sensitivity analysis was conducted on the model, revealing the impacts of four major parameters on the model’s performance.
- (1)
- The proposed model takes a long time for training and inference, and its computational efficiency has not yet met the core requirements of industrial application scenarios for real-time performance and low-cost deployment, making it difficult to directly adapt to the needs of online monitoring and rapid decision-making in engineering practice [44,45].
- (2)
- The scale of original data samples is relatively limited, and the issue of information leakage was not fully considered in the data augmentation process.
- (3)
- The acquisition of real-world scenario datasets is restricted, and cross-dataset verification has not been conducted, so the generalization ability and robustness of the model remain to be further verified.
- (4)
- This study has not incorporated experiments on small-sample scenarios, which to a certain extent limits the comprehensive evaluation of the model’s performance under data-scarce conditions.
- (1)
- In response to the problem of low computational efficiency of the proposed model, future research will improve its efficiency through a combination of algorithm optimization and hardware adaptation, so as to meet the requirements of industrial applications.
- (2)
- To address the issues of limited sample size of raw data and information leakage, future research will expand high-quality data sources and establish a secure data augmentation mechanism, thereby constructing a reliable data system.
- (3)
- To enhance the generalization ability and robustness of the model, future research will build a multi-dimensional verification dataset, conduct cross-dataset and adversarial tests, and carry out targeted optimization of the model based on the test results.
- (4)
- Future research will focus on experiments under small-sample conditions. Specifically, we will conduct sensitivity analyses with different training proportions to evaluate the model’s performance across varying levels of data scarcity and carry out comparative studies with representative baseline methods of Few-shot Learning.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| Abbreviations | false positive | ||
| AI | artificial intelligence | false negative | |
| BN | batch normalization | number of times the features | |
| BiLSTM | bi-directional long and short-term memory network | number of times the features are repeatedly disrupted | |
| BiGRU | bidirectional gated recurrent unit | probability of discarding | |
| BinE-CNN | binary matrix coded neural network | performance of the model on the original data | |
| CNN | convolutional neural network | true positive | |
| CNN-BiLSTM-WFA | convolutional neural network-bidirectional long short-term memory-waveform fault attention | sequence length | |
| ICS | internal covariate shift | weight matrix of the forgetting gate | |
| ISP | image signal processor | learnable weight matrix of the amplitude attention linear layer | |
| LSTM | long short-term memory | the learnable weight matrix of the time-difference attention linear layer | |
| MCNN | multiscale convolutional neural network | observed value of the i-th parameter in a faulty state | |
| MAPE | mean absolute percentage error | original data point | |
| NPU | neural processing unit | feature tensor of the t-th time step in the input sequence | |
| PEMFC | proton exchange membrane fuel cells | element-wise absolute value of | |
| PFI | permutation feature importance | difference between time steps t and t + 1 | |
| PHM | prognostics and health management | observed value of the i-th parameter in a normal steady state | |
| RCU | reconfigurable control unit | mean of the data | |
| RUL | remaining useful life | mean of the small batch of data | |
| VPU | video processing unit | standard deviation of the data | |
| WFA | waveform fault attention | sigmoid activation function | |
| 1DCNN | one-dimensional convolutional neural network | variance of the small batch of data | |
| Variables | difference between time steps t and t + 1 | ||
| final output of WFA mechanism | element-wise absolute value of | ||
| bias term | amplitude attention weight of the t-th time step | ||
| bias term of the amplitude attention linear layer | time-difference attention weight of the t-th time step | ||
| bias term of the time-difference attention linear layer | combined attention weight of the t-th time step | ||
| batch size | learnable scaling | ||
| feature dimension of each time step | offset parameters | ||
References
- Yang, B.; Zheng, R.Y.; Han, Y.M.; Huang, J.X.; Li, M.W.; Shu, H.C.; Su, S.; Guo, Z.X. Recent advances and summarization of fault diagnosis techniques for the photovoltaic system: A critical overview. Prot. Control Mod. Power Syst. 2024, 9, 36–59. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Z.X.; Wang, J.B.; Wang, J.T.; Zhu, T.J.; Shu, H.C.; Qiu, G.F.; Chen, J.; Zhang, J. Solid oxide fuel cell systems fault diagnosis: Critical summarization, classification, and perspectives. J. Energy Storage 2021, 34, 102153. [Google Scholar] [CrossRef]
- Yang, B.; Li, J.L.; Li, Y.L.; Guo, Z.X.; Zeng, K.D.; Shu, H.C.; Cao, P.L.; Ren, Y.X. A critical survey of PEMFC system control: Summaries, advances, and perspectives. Int. J. Hydrogen Energy 2022, 47, 9986–10020. [Google Scholar] [CrossRef]
- Yang, Z.F.; Liu, H.; Yuan, Y.N.; Li, M.H. Can renewable energy development facilitate China’s sustainable energy transition? Perspective from Energy Trilemma. Energy 2024, 304, 132160. [Google Scholar] [CrossRef]
- Aba, M.M.; Sauer, I.L.; Amado, N.B. Comparative review of hydrogen and electricity as energy carriers for the energy transition. Int. J. Hydrogen Energy 2024, 57, 660–678. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.B.; Yu, L.; Shu, H.C.; Yu, T.; Zhang, X.S.; Yao, W.; Sun, L.M. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms. J. Clean. Prod. 2020, 265, 121660. [Google Scholar] [CrossRef]
- Aminudin, M.A.; Kamarudin, S.K.; Lim, B.H.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2023, 48, 371–4388. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Amamou, A.A.; Boulon, L.; Kelouwani, S.; Chaoui, H. Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes. J. Power Sources 2018, 380, 92–104. [Google Scholar] [CrossRef]
- Qasem, N.A.A. A recent overview of proton exchange membrane fuel cells: Fundamentals, applications, and advances. Appl. Therm. Eng. 2024, 252, 123746. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.Y.; Zeng, C.Y.; Chen, Y.J.; Guo, Z.X.; Wang, J.B.; Shu, H.C.; Yu, T.; Zhu, J.W. Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms. Energy 2021, 228, 120592. [Google Scholar] [CrossRef]
- Yang, B.; Liang, B.X.; Qian, Y.C.; Zheng, R.Y.; Su, S.; Guo, Z.X.; Jiang, L. Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm. Appl. Energy 2024, 361, 122857. [Google Scholar] [CrossRef]
- Wang, J.B.; Yang, B.; Zeng, C.Y.; Chen, Y.J.; Guo, Z.X.; Li, D.Y.; Ye, H.Y.; Shao, R.N.; Shu, H.C.; Yu, T. Recent advances and summarization of fault diagnosis techniques for proton exchange membrane fuel cell systems: A critical overview. J. Power Sources 2021, 500, 229932. [Google Scholar] [CrossRef]
- Huang, Z.J.; Su, J.H.; Xie, B.; Shi, Y.; Huang, C.; Qu, X.L. Research on PEMFC fault diagnosis method based on fuzzy C means clustering and probabilistic neural network. Acta Energiae Solaris Sin. 2024, 45, 475–483. (In Chinese) [Google Scholar]
- Zhao, B.; Liu, X.W.; Zhang, L.Q.; Chen, Z.; Zhang, L.X.; Xie, C.J. Fault diagnosis of proton exchange membrane fuel cell integrated system based on google net and transfer learning. Proc. CSEE 2024, 44, 5147–5157. (In Chinese) [Google Scholar]
- Meng, M.; Liu, M.J.; Mei, J.; Li, X.; Grigoriev, S.; Hasanien, H.M.; Tang, X.W.; Li, R.; Sun, C.Y. Polarization loss decomposition-based online health state estimation for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2025, 157, 150162. [Google Scholar] [CrossRef]
- Meng, X.; Sun, C.Y.; Mei, J.; Tang, X.W.; Hasanien, H.M.; Jiang, J.H.; Fan, F.L.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Sun, Y.N.; Tang, X.W.; Mao, L. Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack. Appl. Energy 2024, 360, 1228144. [Google Scholar] [CrossRef]
- Petrone, R.; Zheng, Z.; Hissel, D.; Pera, M.C.; Pianese, C.; Sorrentino, M.; Becherif, M.; Yousfi-Steiner, N. A review on model-based diagnosis methodologies for PEMFCs. Int. J. Hydrogen Energy 2013, 38, 7077–7091. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Pera, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Zuo, B.; Zhang, Z.H.; Cheng, J.S.; Huo, W.W.; Zhong, Z.X.; Wang, M.R. Data-driven flooding fault diagnosis method for proton-exchange membrane fuel cells using deep learning technologies. Energy Convers. Manag. 2022, 251, 115004. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Choi, H.; Kwon, O.; Jang, Y.; Ryu, S.; Lee, H.; Shim, K.; Park, T.; Cha, S.W. Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks. Energy 2023, 266, 126441. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Mao, L.; Hu, Z.Y.; Huang, W.G.; Wu, Q.; Jackson, L. A novel densely connected neural network for proton exchange membrane fuel cell fault diagnosis. Int. J. Hydrogen Energy 2022, 47, 40041–40053. [Google Scholar] [CrossRef]
- Gu, X.; Hou, Z.J.; Cai, J. Data-based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks. Energy AI 2021, 4, 100056. [Google Scholar] [CrossRef]
- Laribi, S.; Mammar, K.; Sahli, Y.; Koussa, K. Analysis and diagnosis of PEM fuel cell failure modes (flooding & drying) across the physical parameters of electrochemical impedance model: Using neural networks method. Sustain. Energy Technol. Assess. 2019, 34, 35–42. [Google Scholar]
- Xu, J.H.; Zhang, B.X.; Zhu, K.Q.; Zheng, X.Y.; Zhang, C.L.; Chen, Z.L.; Yang, Y.R.; Huang, T.M.; Bo, Z.; Wan, Z.M.; et al. Fault diagnosis of PEMFC based on fatal and recoverable failures using multi-scale convolutional neural networks. Int. J. Hydrogen Energy 2024, 80, 916–925. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, T.; Zhang, J.W.; Zhang, S.J. Water management fault diagnosis for proton exchange membrane fuel cells based on deep learning methods. Int. J. Hydrogen Energy 2023, 48, 28163–28173. [Google Scholar] [CrossRef]
- Zhou, S.; Lu, Y.D.; Bao, D.T.; Wang, K.Y.; Shan, J.; Hou, Z.J. Real-time data-driven fault diagnosis of proton exchange membrane fuel cell system based on binary encoding convolutional neural network. Int. J. Hydrogen Energy 2022, 47, 10976–10989. [Google Scholar] [CrossRef]
- Chen, J.Y.; Ran, H.J.; Chen, Z.Y.; Kwan, T.H.; Yao, Q.H. Online pre-diagnosis of multiple faults in proton exchange membrane fuel cells by convolutional neural network based bi-directional long short-term memory parallel model with attention mechanism. Energies 2025, 18, 2669. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, B.; Zheng, R.Y.; Hou, Y.T.; Li, H.B.; Gao, D.K.; Guo, Z.X.; Jiang, L. Fault diagnosis of proton exchange membrane fuel cell using multiple convolutional neural networks with multi-scale attention mechanism. Inf. Sci. 2025, 720, 122524. [Google Scholar] [CrossRef]
- Yuan, T.J.; Guo, Z.L.; Fang, T. Proton exchange membrane fuel cell fault diagnosis based on operation data temporal and spatial characteristics and stacking ensemble learning. Proc. CSEE 2023, 43, 5461–5470. (In Chinese) [Google Scholar]
- Liu, Z.Y.; Sun, Y.N.; Mao, L.; Zhang, H.; Jackson, L.; Wu, Q.; Lu, S.X. Efficient fault diagnosis of proton exchange membrane fuel cell using external magnetic field measurement. Energy Convers. Manag. 2022, 266, 115809. [Google Scholar] [CrossRef]
- Liu, J.W.; Li, Q.; Chen, W.R.; Jiang, L.; Yu, J.J. Research on PEMFC water management fault diagnosis method based on probabilistic neural network and linear discriminant analysis. Proc. CSEE 2019, 39, 3614–3622. (In Chinese) [Google Scholar]
- Wang, Z.H.; Gao, Y.; Yu, J.; Tian, L.; Yin, C. Data-driven fault diagnosis of PEMFC water management with segmented cell and deep learning technologies. Int. J. Hydrogen Energy 2024, 67, 715–727. [Google Scholar] [CrossRef]
- Chen, G.H.; Li, G.L.; Xie, M.L.; Xu, Q.M.; Zhang, G. A probabilistic analysis method based on Noisy-OR gate Bayesian network for hydrogen leakage of proton exchange membrane fuel cell. Reliab. Eng. Syst. Saf. 2024, 243, 109862. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.Y.; Sun, C.Y.; Xu, S.C. Liquid water characteristics in the compressed gradient porosity gas diffusion layer of proton exchange membrane fuel cells using the lattice Boltzmann method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L.; Dunnett, S. Fault diagnosis of practical polymer electrolyte membrane (PEM) fuel cell system with data-driven approaches. Fuel Cells 2017, 17, 247–258. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, L.W.; Chen, J.; Wang, D.Q. A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge. Energy 2024, 286, 129504. [Google Scholar] [CrossRef]
- Mei, J.; Meng, X.; Tang, X.W.; Li, H.R.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.B.; Sun, C.Y.; Fan, F.L.; et al. An accurate parameter estimation method of the voltage model for proton exchange membrane fuel cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Lu, J.J.; Gao, Y.; Zhang, L.Y.; Deng, H.Z.; Cao, J.; Bai, J. A novel dynamic radius support vector data description based fault diagnosis method for proton exchange membrane fuel cell systems. Int. J. Hydrogen Energy 2022, 47, 35825–35837. [Google Scholar] [CrossRef]
- Li, K.; Hu, L.; Song, T.T. Health state estimation of lithium-ion batteries based on CNN-Bi-LSTM. Shandong Electr. Power 2023, 50, 66–72. (In Chinese) [Google Scholar]
- Li, F.; Liu, S.H.; Wang, T.H.; Liu, R. Optimal planning for integrated electricity and heat systems using CNN-BiLSTM-Attention network forecasts. Energy 2024, 309, 133042. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, J.W.; Jia, S.Y.; Weng, J. Research on wind turbine status monitoring methods based on improved PSO-LSTM algorithm. Shandong Electr. Power 2024, 51, 30–37. (In Chinese) [Google Scholar]
- Niu, D.X.; Yu, M.; Sun, L.J.; Gao, T.; Wang, K.K. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Appl. Energy 2022, 313, 118801. [Google Scholar] [CrossRef]
- Lv, J.F.; Yu, Z.L.; Sun, G.H.; Liu, J.X. Deep learning-based fault diagnosis and electrochemical impedance spectroscopy frequency selection method for proton exchange membrane fuel cell. J. Power Sources 2024, 591, 233815. [Google Scholar] [CrossRef]
- Li, J.S.; Zhao, D.Q.; Xie, L.; Zhou, Z.; Zhang, L.Y.; Chen, Q. Spatial-temporal synchronous fault feature extraction and diagnosis for proton exchange membrane fuel cell systems. Energy Convers. Manag. 2024, 315, 118771. [Google Scholar] [CrossRef]













| Sensor Measurement | Fault 1 | Fault 2 | Unknown 1 | Unknown 2 |
|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 |
| 5 | 0.97 | 0.51 | 1 | 0.48 |
| 6 | 0.97 | 0.51 | 1 | 0.48 |
| 7 | 0.32 | 0.002 | 0.45 | 0.005 |
| 8 | 0.32 | 0.001 | 0.45 | 0.006 |
| 9 | 0.95 | 0.38 | 0.98 | 0.36 |
| 10 | 0.19 | 0.08 | 0.2 | 0.08 |
| 11 | 1.01 | 1 | 1 | 0.92 |
| 12 | 0.51 | 0.13 | 0.17 | 0.11 |
| 13 | 0.05 | 0.1 | 0.08 | 0.09 |
| 14 | 0.49 | 0.13 | 0.16 | 0.12 |
| 15 | 0.05 | 0.09 | 0.09 | 0.08 |
| 16 | 0.48 | 0.23 | 0.48 | 0.21 |
| 17 | 0.47 | 0.24 | 0.47 | 0.21 |
| 18 | 0.96 | 0.47 | 1 | 0.44 |
| 19 | 0.96 | 0.47 | 1 | 0.44 |
| 20 | 0.04 | 0.1 | 0.3 | 0.18 |
| Category | Number of Original Data Groups | Number of Augmented Data Groups |
|---|---|---|
| normal | 25 | 50 |
| hydrogen fault | 10 | 50 |
| membrane drying fault | 1 | 50 |
| Unknow 1 | 7 | 50 |
| Unknow 2 | 18 | 50 |
| Parameter | Value |
|---|---|
| Active current | 0.015–0.075 A |
| Active energy constant | 10,000 imp/kWh |
| Reactive current | 1.5 A |
| Reactive energy constant | 10,000 imp/kvarh |
| Rated voltage | 3 × 220 V/380 V |
| Active power | 20 W |
| Apparent power | 30 VA |
| Charging voltage | 4.8 V |
| Rated capacity | 600 mAh |
| CPU clock frequency | 1 GHz |
| Memory | 2 GB |
| Data storage memory | 16 GB |
| Types | Parameters | Value |
|---|---|---|
| CNN-BiLSTM-WFA CNN-BiLSTM-Multiplicative Attention | Bidirectional lstm layer number of cells | 64 |
| Number of filters conv1D | 64 | |
| Conv1D core size | 3 | |
| Pooling size of maxpooling1D | 2 | |
| CNN | Number of filters conv1D | 64 |
| Conv1D core size | 3 | |
| Pooling size of maxpooling1D | 2 | |
| BiLSTM | Bidirectional LSTM layer number of cells | 64 |
| LSTM | LSTM layer number of cells | 64 |
| BiGRU | Bidirectional GRU layer number of cells | 64 |
| Spatiotemporal Transformer | Feature dimension | 64 |
| Number of spatiotemporal blocks | 3 | |
| Number of attention heads | 4 | |
| Kernel size | 3 | |
| Hidden layer dimension | 128 |
| Types | Label | Precision | Recall | F-Score | Inference Time /Seconds | Training Time /Seconds |
|---|---|---|---|---|---|---|
| CNN-BiLSTM-WFA | 0 | 1.00 | 1.00 | 1.00 | / | / |
| 1 | 1.00 | 1.00 | 1.00 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 1.00 | 1.00 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 1.00 | 1.00 | 1.00 | 11.4 | 1164.4 | |
| CNN-BiLSTM-Multiplicative Attention | 0 | 0.63 | 1.00 | 0.77 | / | / |
| 1 | 0.67 | 0.80 | 0.73 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.20 | 0.33 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 0.86 | 0.80 | 0.77 | 6.1 | 625.4 | |
| CNN | 0 | 0.62 | 1.00 | 0.77 | / | / |
| 1 | 1.00 | 0.80 | 0.89 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.60 | 0.75 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 0.88 | 0.88 | 0.88 | 1.1 | 99.6 | |
| BiLSTM | 0 | 0.56 | 1.00 | 0.71 | / | / |
| 1 | 1.00 | 0.60 | 0.75 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.60 | 0.75 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 0.84 | 0.84 | 0.84 | 21.0 | 1244.2 | |
| LSTM | 0 | 0.56 | 1.00 | 0.71 | / | / |
| 1 | 1.00 | 0.60 | 0.75 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.60 | 0.75 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 0.84 | 0.84 | 0.84 | 4.5 | 63.9 | |
| BiGRU | 0 | 0.56 | 1.00 | 0.71 | / | / |
| 1 | 1.00 | 0.60 | 0.75 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.60 | 0.75 | / | / | |
| 4 | 1.00 | 1.00 | 1.00 | / | / | |
| Total | 0.84 | 0.84 | 0.84 | 28.5 | 63.2 | |
| Spatiotemporal Transformer | 0 | 0.62 | 1.00 | 0.77 | / | / |
| 1 | 0.60 | 0.60 | 0.60 | / | / | |
| 2 | 1.00 | 1.00 | 1.00 | / | / | |
| 3 | 1.00 | 0.20 | 0.33 | / | / | |
| 4 | 0.83 | 1.00 | 0.90 | / | / | |
| Total | 0.81 | 0.76 | 0.72 | 14.0 | 1857.1 |
| Types | Precision | Recall | F-Score |
|---|---|---|---|
| Gaussian noise | 1.00 | 1.00 | 1.00 |
| Offset noise | 1.00 | 0.98 | 0.89 |
| Periodic noise | 0.80 | 0.78 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, J.; Xie, W.; Xiao, X.; Guo, Z.; Lu, X. Temporal-Spatial Waveform Fault Attention Design for PEMFC Fault Diagnosis via Permutation Feature Importance in Smart Terminal. Processes 2026, 14, 18. https://doi.org/10.3390/pr14010018
Liu J, Xie W, Xiao X, Guo Z, Lu X. Temporal-Spatial Waveform Fault Attention Design for PEMFC Fault Diagnosis via Permutation Feature Importance in Smart Terminal. Processes. 2026; 14(1):18. https://doi.org/10.3390/pr14010018
Chicago/Turabian StyleLiu, Jian, Wenqiang Xie, Xiaolong Xiao, Ziran Guo, and Xiaoxing Lu. 2026. "Temporal-Spatial Waveform Fault Attention Design for PEMFC Fault Diagnosis via Permutation Feature Importance in Smart Terminal" Processes 14, no. 1: 18. https://doi.org/10.3390/pr14010018
APA StyleLiu, J., Xie, W., Xiao, X., Guo, Z., & Lu, X. (2026). Temporal-Spatial Waveform Fault Attention Design for PEMFC Fault Diagnosis via Permutation Feature Importance in Smart Terminal. Processes, 14(1), 18. https://doi.org/10.3390/pr14010018

