Microbiological and Physicochemical Characterization During Biodrying of Organic Solid Waste
Abstract
:1. Introduction
1.1. Overview of Organic Waste
1.2. Physical and Chemical Parameters During Biodrying
1.3. Microbial Populations During Organic Waste Biodrying
2. Materials and Methods
2.1. Pile Start-Up
2.2. Measurement of Physicochemical Parameters in the Pile
2.3. Microbiological Characterization
3. Results and Discussion
3.1. Microbial Populations During the Biodrying Process
3.2. Pile Temperature and Its Relationship to Microbial Populations
3.3. Pile Moisture and Its Relationship to Microbial Populations
3.4. The pH of the Pile and Its Relationship to Microbial Populations
3.5. Influence of O2 and CO2 Concentrations on Microbial Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valdez Vázquez, I.; Acevedo Benítez, J.A.; Hernández Santiago, C. Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew. Sustain. Energy Rev. 2010, 14, 2147–2153. [Google Scholar] [CrossRef]
- Tan, C.H.; Hii, C.L.; Borompichaichartkul, C.; Phumsombat, P.; Kong, I. Valorization of fruits, vegetables, and their by-products: Drying and bio-drying. Dry. Technol. 2022, 40, 1514–1538. [Google Scholar] [CrossRef]
- Vargas Corredor, Y.A.; Pérez Pérez, L.I. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Rev. Fac. Cienc. Básicas 2018, 14, 59–72. [Google Scholar] [CrossRef]
- Cárdenas Moreno, P.R.; Piña-Guzmán, A.B.; Robles-Martínez, F. Estimación del biogás generado en sitios de disposición final del Estado de México. Rev. Int. Contam. Ambient. 2021, 37, 27–38. [Google Scholar] [CrossRef]
- Mancini, E.; Arzoumanidis, I.; Raggi, A. Evaluation of potential environmental impacts related to two organic waste treatment options in Italy. J. Clean. Prod. 2019, 214, 927–938. [Google Scholar] [CrossRef]
- Maia, G.D.; Horta, A.C.L.; Felizardo, M.P. From the conventional to the intermittent biodrying of orange solid waste biomass. Chem. Eng. Process. Process Intensif. 2023, 188, 109361. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, L.; Jahng, D. Importance of Initial Moisture Content and Bulking Agent for Biodrying Sewage Sludge. Dry. Technol. 2014, 32, 135–144. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, D.; Li, Y.; Chadwick, D.; Li, G.; Li, Y.; Du, L. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manag. 2017, 62, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Cai, L.; Krafft, T.; Gao, D.; Wang, L. Biodrying performance and bacterial community structure under variable and constant aeration regimes during sewage sludge biodrying. Dry. Technol. 2017, 36, 84–92. [Google Scholar] [CrossRef]
- Mohammed, M.; Ozbay, I.; Durmusoglu, E. Biodrying of green waste with high moisture content. Process Saf. Environ. Protect. 2017, 3, 420–427. [Google Scholar] [CrossRef]
- Xin, L.; Li, X.; Bi, F.; Yan, X.; Wang, H.; Wu, W. Accelerating food waste com-posting course with biodrying and maturity process: A pilot study. ACS Sustain. Chem. Eng. 2021, 9, 224–235. [Google Scholar] [CrossRef]
- Contreras-Cisneros, R.M.; Orozco-Álvarez, C.; Piña-Guzmán, A.B.; Ballesteros-Vásquez, L.C.; Molina-Escobar, L.; Alcántara-García, S.S.; Robles-Martínez, F. The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 During Biodrying in Semi-static Piles. Processes 2021, 9, 520. [Google Scholar] [CrossRef]
- Cai, L.; Chen, T.-B.; Zheng, S.-W.; Liu, H.-T.; Zheng, G.-D. Decomposition of lignocellulose and readily degradable carbohydrates during sewage sludge biodrying, insights of the potential role of microorganisms from a metagenomic analysis. Chemosphere 2018, 201, 127–136. [Google Scholar] [CrossRef]
- Hao, Z.; Jahng, D. Variations of organic matters and extracellular enzyme activities during biodrying of dewatered sludge with different bulking agents. Biochem. Eng. J. 2019, 147, 126–135. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.Y.; Chen, T.B.; Zheng, G.D.; Cao, M.K.; Cai, L. Adding a recyclable amendment to facilitate sewage sludge biodrying and reduce costs. Chemosphere 2020, 256, 127009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, X.; Qi, L.; Shao, C.; Lin, Y.; Zhan, J.; Wei, Y. Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Appl. Microbiol. Biotechnol. 2015, 99, 7321–7331. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, X.; Yuan, S.; Li, N.; Liu, Z.; Jin, J. Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process. Bioresour. Technol. 2015, 175, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Chen, T.B.; Gao, D.; Yu, J. Bacterial communities and their association with the bio-drying of sewage sludge. Water Res. 2016, 90, 44–51. [Google Scholar] [CrossRef]
- Cai, L.; Krafft, T.; Chen, T.B.; Lv, W.Z.; Gao, D.; Zhang, H.Y. New insights into biodrying mechanism associated with tryptophan and tyrosine degradations during sewage sludge biodrying. Bioresour. Technol. 2017, 244, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; He, J.; Cui, C.; Tang, J. Exploiting community structure, interactions and functional characteristics of fungi involved in the biodrying of storage sludge and beer lees. J. Environ. Manage. 2019, 232, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Guzmán Juárez, C.A. Caracterización Microbiológica de Una Pila de Biosecado. Bachelor’s Thesis, National Polytechnic Institute, Mexico City, Mexico, 2016. [Google Scholar]
- Cao, M.K.; Guo, H.T.; Zheng, G.D.; Chen, T.B.; Cai, L. Microbial succession and degradation during kitchen waste biodrying, highlighting the thermophilic phase. Bioresour. Technol. 2021, 326, 124762. [Google Scholar] [CrossRef]
- DOF. NORMA Oficial Mexicana NOM-021-RECNAT-2000; DOF: Mexico City, Mexico, 2000. [Google Scholar]
- DOF. NORMA Oficial Mexicana NOM-110-SSA1-1994; DOF: Mexico City, Mexico, 1994. [Google Scholar]
- DOF. NORMA Oficial Mexicana NOM-092-SSA1-1994; DOF: Mexico City, Mexico, 1994. [Google Scholar]
- Malinowski, M.; Wolny Koładka, K. Microbiological and Energetic Assessment of the Effects of the Biodrying of Fuel Produced from Waste. Ecol. Chem. Eng. S 2017, 24, 551–564. [Google Scholar] [CrossRef]
- Zhang, D.Q.; He, P.J.; Yu, L.Z.; Shao, L.M. Effect of inoculation time on the bio-drying performance of combined hydrolytic–aerobic process. Bioresour. Technol. 2009, 100, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Chroni, C.; Kyriacou, A.; Georgaki, I.; Manios, T.; Kotsou, M.; Lasaridi, K. Microbial characterization during composting of biowaste. Waste Manag. 2009, 29, 1520–1525. [Google Scholar] [CrossRef]
- Sudharsan Varma, V.; Das, S.; Sastri, C.V.; Kalamdhad, A.S. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste. Sustain. Environ. Res. 2017, 27, 265–272. [Google Scholar] [CrossRef]
- Tortora, G.J.; Funke, B.R.; Case, C.L. Microbiology: An Introduction, 13th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2019. [Google Scholar]
- Trautmann, N.; Olynciw, E. Compost Microorganisms; Cornell Waste Management Institute, Cornell University: Ithaca, NY, USA, 1996. [Google Scholar]
- Liu, T.; Cui, C.; He, J.; Tang, J. Insights into the succession of the bacterial microbiota during biodrying of storage sludge mixed with beer lees: Studies on its biodiversity, structure, associations, and functionality. Sci. Total Environ. 2018, 664, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- Bernal, P.M.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Chapter Three—Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Cambridge, UK, 2017; Volume 144, pp. 143–233. [Google Scholar]
- Orozco Álvarez, C.; Díaz Megchun, J.; Macías Hernández, M.; Robles Martínez, F. Efecto de la frecuencia de volteo en el biosecado de residuos sólidos orgánicos. Rev. Int. Contam. Ambient. 2019, 35, 979–989. [Google Scholar] [CrossRef]
- Orozco Álvarez, C.; Molina Carbajal, E.; Díaz Megchún, J.; Osorio Mirón, A.; Robles Martínez, F. Desarrollo de un modelo matemático para el biosecado de residuos sólidos orgánicos en pilas. Rev. Int. Contam. Ambient. 2019, 35, 79–90. [Google Scholar] [CrossRef]
- Matsushita, K.; Azuma, Y.; Kosaka, T.; Yakushi, T.; Hoshida, H.; Akada, R.; Yamada, M. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 2016, 80, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.J.; Parchert, K.J.; Bustamante, J.M.; Ricken, B.J.; Hutchinson, M.I.; Natvig, D.O. Thermophilic fungi in an aridland ecosystem. Mycologia 2012, 104, 813–825. [Google Scholar] [CrossRef]
- Zawadzka, A.; Krzystek, L.; Stolarek, P.; Ledakowicz, S. Biodrying of Organic Fraction of Municipal Solid Wastes. Dry. Technol. 2010, 28, 1220–1226. [Google Scholar] [CrossRef]
- Colomer Mendoza, F.J.; Herrera Prats, L.; Robles Martinez, F.; Gallardo Izquierdo, A.; Piña Guzmán, A.B. Effect of airflow on biodrying of gardening wastes in reactors. J. Environ. Sci. 2013, 25, 865–872. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz Ribeiro, N.; Pereira Souza, T.; Martinez Abreu Soares Costa, L.; Castro, C.P.; Souza Dias, E. Microbial additives in the composting process. Cienc. Agrotec. 2017, 41, 159–168. [Google Scholar] [CrossRef]
- Park, Y.W. Moisture and Water Activity. In Handbook of Processed Meats and Poultry Analysis; Nollet, L.M., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 35–70. [Google Scholar]
- Omaña, M.; Cortes, F.; Isáza, C.; García, A. Isotermas de sorción de agua en residuos de extracción de jugo de naranja. Rev. Bioagro 2010, 8, 61–67. [Google Scholar]
- Safefood 360°, Inc. Water Activity (aw) in Foods. 2014. Available online: https://www.safefood360.com/resources/Water-Activity.pdf (accessed on 15 November 2024).
- Tuomela, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Kan, Z.; Li, B.; Cao, Y.; Jin, H. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw. Bioresour. Technol. 2021, 341, 125842. [Google Scholar] [CrossRef]
- Ballesteros Vásquez, L.C.; Robles Martínez, F.; Contreras Cisneros, R.M.; Piña Guzmán, A.B.; Osorio Mirón, A. Residuos agrícolas y agroindustriales biosecados como alternativa energética. Rev. Int. Investig. Innovación Tecnol. (RIIIT) 2022, 10, 18–31. [Google Scholar]
- Tun, M.M.; Juchelková, D. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environ. Engine Res. 2019, 24, 529–542. [Google Scholar] [CrossRef]
- Ab Jalil, N.A.; Basri, H.; Ahmad Basri, N.E.; Abushammala, M.F.M. The potential of biodrying as pre-treatment for municipal solid waste in Malaysia. J. Adv. Rev. Sci. Res. 2015, 7, 1–13. [Google Scholar]
Process and Waste | Mesophilic | Thermophilic | Molds and Yeasts | Reference |
---|---|---|---|---|
(CFU/g Fresh) | ||||
Biodrying Orange waste, sugar-cane bagasse, and mulch | 107–109 | 106–109 | 106–108 | This work |
Biodrying Orange waste, grass, and mulch | 107–109 | 106–109 | 107–109 | [21] |
Biodrying Municipal solid waste (MSW) | 105–106 | 104–107 | 103–105 | [26] |
Biodrying MSW | 108–1010 | 107–109 | [27] | |
Composting Yard and food waste | 104–109 | 104–109 | 104–107 | [28] |
Composting Yard waste and manure | 106–1010 | 105–108 | [29] |
Process | Process Time (d) | Initial Moisture (%) | Final Moisture (%) | Reference |
---|---|---|---|---|
Biodrying (orange waste, bagasse and mulch) | 50 | 88 | 9.5 | This work |
Biodrying (waste sludge and beer lees) | 18 | 71 | 54 | [32] |
Biodrying (waste sludge and sawdust) | 20 | 66 | 50 | [9] |
Biodrying (orange residue, grass and mulch) | 49 | 85 | 7 | [21] |
Biodrying (grass and mulch) | 20 | 67 | 21 | [39] |
Biodrying (organic fraction of MSW) | 10 | 84 | 33 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco-Álvarez, C.; Gervacio-Hernández, A.; Moreno-Rivera, M.d.L.; Piña-Guzmán, B.; Robles-Martínez, F. Microbiological and Physicochemical Characterization During Biodrying of Organic Solid Waste. Processes 2025, 13, 78. https://doi.org/10.3390/pr13010078
Orozco-Álvarez C, Gervacio-Hernández A, Moreno-Rivera MdL, Piña-Guzmán B, Robles-Martínez F. Microbiological and Physicochemical Characterization During Biodrying of Organic Solid Waste. Processes. 2025; 13(1):78. https://doi.org/10.3390/pr13010078
Chicago/Turabian StyleOrozco-Álvarez, Carlos, Aniela Gervacio-Hernández, María de Lourdes Moreno-Rivera, Belem Piña-Guzmán, and Fabián Robles-Martínez. 2025. "Microbiological and Physicochemical Characterization During Biodrying of Organic Solid Waste" Processes 13, no. 1: 78. https://doi.org/10.3390/pr13010078
APA StyleOrozco-Álvarez, C., Gervacio-Hernández, A., Moreno-Rivera, M. d. L., Piña-Guzmán, B., & Robles-Martínez, F. (2025). Microbiological and Physicochemical Characterization During Biodrying of Organic Solid Waste. Processes, 13(1), 78. https://doi.org/10.3390/pr13010078