4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Electrolytes
2.3. Preparation of Electrodes
2.3.1. Preparation of N4 Cathode
2.3.2. Preparation of Graphite Cathode
2.3.3. Preparation of Graphite Anode
2.4. Cell Assembly
2.5. Electrochemical Testing
2.6. Material Characterization
2.7. Electrochemical Tests
2.7.1. Kinetics Analysis
2.7.2. Pseudocapacitive Contribution Test
2.7.3. Galvanostatic Intermittent Titration Technique (GITT)
3. Results and Discussion
3.1. Electrochemical Performance of Graphite Cathodes in Commercial Electrolytes
3.2. Characterization and Electrochemical Performance of N4 Electrodes
3.3. Energy Storage Mechanism of N4
3.4. Electrochemical Performance of MCMB Graphite Anodes
3.5. Electrochemical Performance of N4||MCMB DIBs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, P.; Tang, Y.; Tan, Z.; Lei, C.; Qin, Z.; Li, Y.; Li, Y.; Cheng, Y.; Wu, F.; He, Z.; et al. Solid-state batteries encounter challenges regarding the interface involving lithium metal. Nano Energy 2024, 124, 109502. [Google Scholar] [CrossRef]
- Mathiyalagan, K.; Shin, D.; Lee, Y.-C. Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries. J. Energy Chem. 2024, 90, 40–57. [Google Scholar] [CrossRef]
- Shi, C.; Yu, M. Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Mater. 2023, 57, 429–459. [Google Scholar] [CrossRef]
- Versaci, D.; Colombo, R.; Montinaro, G.; Buga, M.; Cortes Felix, N.; Evans, G.; Bella, F.; Amici, J.; Francia, C.; Bodoardo, S. Tailoring cathode materials: A comprehensive study on LNMO/LFP blending for next generation lithium-ion batteries. J. Power Sources 2024, 613, 234955. [Google Scholar] [CrossRef]
- Wang, X.; Feng, W.; Zhou, Z.; Zhang, H. Design of sulfonimide anions for rechargeable lithium batteries. Chem. Commun. 2024, 60, 11434–11449. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Z.; Wang, Y.; Li, J.-T.; Fu, H. Recent advances in preferentially selective Li recovery from spent lithium-ion batteries: A review. J. Environ. Chem. Eng. 2024, 12, 112903. [Google Scholar] [CrossRef]
- Ramasubramanian, B.; Prasada Rao, R.; Dalapati, G.K.; Adams, S.; Ramakrishna, S. Sustainable Materials and Decarbonization Prospects in Battery Technologies. ACS Appl. Energy Mater. 2024, 7, 3018–3020. [Google Scholar] [CrossRef]
- Shi, R.; Wang, B.; Tang, D.; Wei, X.; Zhou, G. Towards High Value-Added Recycling of Spent Lithium-Ion Batteries for Catalysis Application. Electrochem. Energy Rev. 2024, 7, 28. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Ruan, J.; Li, Q.; Ding, J.; Fang, F.; Wang, F. Research progress in non-aqueous low-temperature electrolytes for sodium-based batteries. Sci. China Chem. 2024, 67, 4063–4084. [Google Scholar] [CrossRef]
- Morag, A.; Chu, X.; Marczewski, M.; Kunigkeit, J.; Neumann, C.; Sabaghi, D.; Zukowska, G.Z.; Du, J.; Li, X.; Turchanin, A.; et al. Unlocking Four-electron Conversion in Tellurium Cathodes for Advanced Magnesium-based Dual-ion Batteries. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401818. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yao, W.; Zhou, L.; Zhang, F.; Zheng, Y.; Lee, C.S.; Tang, Y. Secondary Amines Functionalized Organocatalytic Iodine Redox for High-Performance Aqueous Dual-Ion Batteries. Adv. Mater. 2024, 36, e2314247. [Google Scholar] [CrossRef]
- He, F.; Zhou, Y.; Chen, X.; Wang, T.; Zeng, Y.; Zhang, J.; Chen, Z.; Liu, W.; Gao, P. A bipolar pyridine-functionalized porphyrin with hybrid charge-storage for dual-ion batteries. Chem. Commun. 2023, 59, 2787–2790. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tang, M.; Lan, H.; Zhu, Q.; Wang, G.; Yang, G.; Yang, J.; Zhou, W.; Wang, H. An anode-free sodium dual-ion battery. Energy Storage Mater. 2024, 70, 103480. [Google Scholar] [CrossRef]
- Dai, H.; Chen, P.; Chen, Y.; Xu, W.; Ding, B.; Xia, X.; Liu, H. Dual Energy Storages by Sequential “Rocking Chair” and “Dual Ion” Processes of LiFe0.6Mn0.4PO4/Carbon Modified Graphite Flakes. ACS Appl. Energy Mater. 2024, 7, 2671–2680. [Google Scholar] [CrossRef]
- Jayan, P.; Anjali, A.; Park, S.; Lee, Y.S.; Aravindan, V. Controlled Synthesis of SnO2 Nanostructures as Alloy Anode via Restricted Potential Toward Building High-Performance Dual-Ion Batteries with Graphite Cathode. Small 2023, 20, e2305309. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Luo, S.; Wang, H.; Li, L.; Fang, Y.; Zhang, F.; Gao, X.; Zhang, Z.; Yuan, W. A Review of Anode Materials for Dual-Ion Batteries. Nano-Micro Lett. 2024, 16, 252. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, W.; Zhang, F.; Lee, C.-S.; Tang, Y. Anion-hosting cathodes for current and late-stage dual-ion batteries. Sci. China Chem. 2024, 67, 1485–1509. [Google Scholar] [CrossRef]
- Li, G.; Shi, X.-J.; Dong, T.; Yu, Q.; Mao, Z.-F.; Liu, X.-H.; Wang, R.; He, B.-B.; Jin, J.; Gong, Y.-S.; et al. Binder-induced ultrafast PF6−-intercalation toward a high-voltage, high-power and long-cycling zinc–graphite dual-ion battery. Rare Met. 2024, 43, 5017–5029. [Google Scholar] [CrossRef]
- Cheng, Z.; Dong, Q.; Pu, G.; Song, J.; Zhong, W.; Wang, J. A Durable and High-Voltage Mn–Graphite Dual-Ion Battery Using Mn-Based Hybrid Electrolytes. Small 2024, 20, e2400389. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, X.; Ueno, H.; Deng, T.; Zheng, W. Manipulating Multivalent Anion Intercalation for High-Energy Aqueous Zn–Graphite Dual-Ion Batteries. Adv. Energy Mater. 2024, 14, 2401914. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, K.; Yu, D.Y.W. Tuning Electrolyte Solvation Structure and CEI Film to Enable Long Lasting FSI−-Based Dual-Ion Battery. Adv. Funct. Mater. 2023, 33, 2300305. [Google Scholar] [CrossRef]
- Fan, H.; Qi, L.; Yoshio, M.; Wang, H. Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate. Solid State Ion. 2017, 304, 107–112. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, B.K.; Kang, S.; Yang, S.J.; Choi, S.H.; Yoo, D.J.; Kim, K.J. Bespoke Dual-Layered Interface Enabled by Cyclic Ether in Localized High-Concentration Electrolytes for Lithium Metal Batteries. Adv. Funct. Mater. 2024, 34, 2408365. [Google Scholar] [CrossRef]
- Luchkin, S.Y.; Pazhetnov, E.M. Explaining the EC–PC disparity in Li-ion batteries: How interface stiffness governs SEI formation on graphite. J. Mater. Chem. A 2024, 12, 29795–29801. [Google Scholar] [CrossRef]
- Martins, M.; Haering, D.; Connell, J.G.; Wan, H.; Svane, K.L.; Genorio, B.; Farinazzo Bergamo Dias Martins, P.; Lopes, P.P.; Gould, B.; Maglia, F.; et al. Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries. ACS Catal. 2023, 13, 9289–9301. [Google Scholar] [CrossRef]
- Zhang, S.S.; Jow, T.R.; Amine, K.; Henriksen, G.L. LiPF6–EC–EMC electrolyte for Li-ion battery. J. Power Sources 2002, 107, 18–23. [Google Scholar] [CrossRef]
- Ikhe, A.B.; Seo, J.Y.; Park, W.B.; Lee, J.-W.; Sohn, K.-S.; Pyo, M. 3-V class Mg-based dual-ion battery with astonishingly high energy/power densities in common electrolytes. J. Power Sources 2021, 506, 230261. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, K.; Liu, P.; Li, H.; Jiao, L. Optimized Cathode for High-Energy Sodium-Ion Based Dual-Ion Full Battery with Fast Kinetics. Adv. Funct. Mater. 2021, 31, 2107830. [Google Scholar] [CrossRef]
- Obrezkov, F.A.; Shestakov, A.F.; Vasil’ev, S.G.; Stevenson, K.J.; Troshin, P.A. Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 2021, 9, 2864–2871. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Zhang, C.; Guo, Y.; Yu, A.; Mei, S.; Yao, C.J. Electropolymerization of Donor–Acceptor Conjugated Polymer for Efficient Dual-Ion Storage. Adv. Sci. 2024, 11, e2310239. [Google Scholar] [CrossRef]
- Guan, D.; Wang, W.; Chen, B.; Wu, J.; Hu, G.; Peng, Z.; Cao, Y.; Wen, L.; Du, K. Does Salt Concentration Matter? New Insights on the Intercalation Behavior of PF6− into Graphite Cathode for the Dual-Ion Battery. Adv. Funct. Mater. 2023, 33, 2215113. [Google Scholar] [CrossRef]
- Wang, H.; Yoshio, M. Suppression of PF6− intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors. Chem. Commun. 2010, 46, 1544–1546. [Google Scholar] [CrossRef]
- Wang, G.; Dmitrieva, E.; Kohn, B.; Scheler, U.; Liu, Y.; Tkachova, V.; Yang, L.; Fu, Y.; Ma, J.; Zhang, P.; et al. An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angew. Chem. Int. Ed. 2022, 61, e202116194. [Google Scholar] [CrossRef]
- Chen, X.; Duan, X.; Oh, W.-D.; Zhang, P.-H.; Guan, C.-T.; Zhu, Y.-A.; Lim, T.-T. Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: Maneuverable N-B bonding configurations and oxidation pathways. Appl. Catal. B Environ. 2019, 253, 419–432. [Google Scholar] [CrossRef]
- Obrezkov, F.A.; Somova, A.I.; Fedina, E.S.; Vasil’ev, S.G.; Stevenson, K.J.; Troshin, P.A. Dihydrophenazine-Based Copolymers as Promising Cathode Materials for Dual-Ion Batteries. Energy Technol. 2020, 9, 2000772. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Y.; Amzil, S.; Qiu, T.; Xu, W.; Jiang, F.; Fang, Z.; Huang, J.; Dai, G. Tetraphenylbiphenyldiamine: Insight into anion storage mechanism as a cathode in dual ion batteries. Appl. Surf. Sci. 2021, 542, 148581. [Google Scholar] [CrossRef]
- Wang, H.G.; Wang, H.; Si, Z.; Li, Q.; Wu, Q.; Shao, Q.; Wu, L.; Liu, Y.; Wang, Y.; Song, S.; et al. A Bipolar and Self-Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dual-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2019, 58, 10204–10208. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, Z.; Wang, W.; Xiong, P.; Li, B.; Li, M.; Yang, J.; Xu, Y. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 11992–11998. [Google Scholar] [CrossRef] [PubMed]
- Obrezkov, F.A.; Fedina, E.S.; Somova, A.I.; Akkuratov, A.V.; Stevenson, K.J. Facile Method for Cross-Linking Aromatic Polyamines to Engender beyond Lithium Ion Cathodes for Dual-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 11827–11835. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, J.; Zhang, J.; Lang, Q.; Yu, J.; Yang, Y.; Luo, L.; Liu, Z.; Ye, J.; Wang, G. 4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries. Processes 2025, 13, 232. https://doi.org/10.3390/pr13010232
Che J, Zhang J, Lang Q, Yu J, Yang Y, Luo L, Liu Z, Ye J, Wang G. 4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries. Processes. 2025; 13(1):232. https://doi.org/10.3390/pr13010232
Chicago/Turabian StyleChe, Jiulong, Jian Zhang, Qing Lang, Jiayuan Yu, Yixiao Yang, Longqi Luo, Zhiyi Liu, Jiahui Ye, and Gang Wang. 2025. "4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries" Processes 13, no. 1: 232. https://doi.org/10.3390/pr13010232
APA StyleChe, J., Zhang, J., Lang, Q., Yu, J., Yang, Y., Luo, L., Liu, Z., Ye, J., & Wang, G. (2025). 4,4′,4″-Tris(Diphenylamino)Triphenylamine: A Compatible Anion Host in Commercial Li-Ion Electrolyte for Dual-Ion Batteries. Processes, 13(1), 232. https://doi.org/10.3390/pr13010232