A Hybrid Data-Driven and Model-Based Approach for Leak Reduction in Water Distribution Systems Using LQR and Genetic Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study and Problem Formulation
2.2. Diagnosis and Control of Leaks
- Leak Location with Genetic Algorithms
- Controller Design
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohorquez, J.; Alexander, B.; Simpson, A.R.; Lambert, M.F. Leak Detection and Topology Identification in Pipelines Using Fluid Transients and Artificial Neural Networks. J. Water Resour. Plan. Manag. 2020, 146, 04020040. [Google Scholar] [CrossRef]
- Khoa Bui, X.; Marlim, S.M.; Kang, D. Water network partitioning into district metered areas: A state-of-the-art review. Water 2020, 12, 1002. [Google Scholar] [CrossRef]
- Peng, Y.; He, M.; Hu, F.; Mao, Z.; Huang, X.; Ding, J. Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2405.07488. [Google Scholar]
- Quiñones-Grueiro, M.; Ares Milián, M.; Sánchez Rivero, M.; Silva Neto, A.J.; Llanes-Santiago, O. Robust leak localization in water distribution networks using computational intelligence. Neurocomputing 2021, 438, 195–208. [Google Scholar] [CrossRef]
- Keramat, A.; Ahmadianfar, I.; Duan, H.F.; Hou, Q. Spectral transient-based multiple leakage identification in water pipelines: An efficient hybrid gradient-metaheuristic optimization. Expert Syst. Appl. 2023, 224, 120021. [Google Scholar] [CrossRef]
- Yousefi-Khoshqalb, E.; Nikoo, M.R.; Gandomi, A.H. Chapter 14—Optimal deployment of sensors for leakage detection in water distribution systems using metaheuristics. In Comprehensive Metaheuristics; Mirjalili, S., Gandomi, A.H., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 269–291. [Google Scholar] [CrossRef]
- Gómez-Coronel, L.; Santos-Ruiz, I.; Torres, L.; López-Estrada, F.R.; Gómez-Peñate, S.; Escobar-Gómez, E. Digital Twin of a Hydraulic System with Leak Diagnosis Applications. Processes 2023, 11, 3009. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, W.; Chen, B.; Tan, D.; Zhang, Y.; Shen, D. Robust hierarchical sensor optimization placement method for leak detection in water distribution system. Water Resour. Manag. 2021, 35, 3995–4008. [Google Scholar] [CrossRef]
- Rostami, I.; Darvishi, E. Combining inverse solution method and meta-heuristic algorithm to calculate the amount and location of leaks in water distribution networks. Irrig. Water Eng. 2021, 11, 87–104. [Google Scholar] [CrossRef]
- Shahhosseini, A.; Najarchi, M.; Najafizadeh, M.M.; Hezaveh, M.M. Performance optimization of water distribution network using meta-heuristic algorithms from the perspective of leakage control and resiliency factor (case study: Tehran water distribution network, Iran). Results Eng. 2023, 20, 101603. [Google Scholar] [CrossRef]
- Mashhadi, N.; Shahrour, I.; Attoue, N.; El Khattabi, J.; Aljer, A. Use of machine learning for leak detection and localization in water distribution systems. Smart Cities 2021, 4, 1293–1315. [Google Scholar] [CrossRef]
- Ares-Milián, M.J.; Quiñones-Grueiro, M.; Verde, C.; Llanes-Santiago, O. A leak zone location approach in water distribution networks combining data-driven and model-based methods. Water 2021, 13, 2924. [Google Scholar] [CrossRef]
- Romero-Ben, L.; Alves, D.; Blesa, J.; Cembrano, G.; Puig, V.; Duviella, E. Leak localization in water distribution networks using data-driven and model-based approaches. J. Water Resour. Plan. Manag. 2022, 148, 04022016. [Google Scholar] [CrossRef]
- Hu, X.; Han, Y.; Yu, B.; Geng, Z.; Fan, J. Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. J. Clean. Prod. 2021, 278, 123611. [Google Scholar] [CrossRef]
- Romero-Ben, L.; Cembrano, G.; Puig, V.; Blesa, J. Model-free Sensor Placement for Water Distribution Networks using Genetic Algorithms and Clustering*. IFAC-PapersOnLine 2022, 55, 54–59. [Google Scholar] [CrossRef]
- Galuppini, G.; Creaco, E.; Toffanin, C.; Magni, L. Service pressure regulation in water distribution networks. Control Eng. Pract. 2019, 86, 70–84. [Google Scholar] [CrossRef]
- Ayad, A.; Khalifa, A.; Fawy, M.E.; Moawad, A. An integrated approach for non-revenue water reduction in water distribution networks based on field activities, optimisation, and GIS applications. Ain Shams Eng. J. 2021, 12, 3509–3520. [Google Scholar] [CrossRef]
- Dai, P.D. Optimal pressure management in water distribution systems using an accurate pressure reducing valve model based complementarity constraints. Water 2021, 13, 825. [Google Scholar] [CrossRef]
- Jones, F.T.; Barkdoll, B.D. Viability of pressure-reducing valves for Leak reduction in water distribution systems. Water Conserv. Sci. Eng. 2022, 7, 657–670. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, J.; Chen, J.; Xie, J.; Que, Q.; Munthali, R.M.; Zhang, T. Optimization of pressure management in water distribution systems based on pressure-reducing valve control: Evaluation and case study. Sustainability 2023, 15, 11086. [Google Scholar] [CrossRef]
- Chaudhry, M.H. Applied Hydraulic Transients; Springer: Berlin/Heidelberg, Germany, 2014; Volume 415. [Google Scholar]
- Henrie, M.; Carpenter, P.; Nicholas, R.E. Pipeline Leak Detection Handbook; Gulf Professional Publishing: Houston, TX, USA, 2016. [Google Scholar]
- Tsetimi, J.; Mamadu, E.J. Finite Difference Analysis of Pressure Surge at the Valve of a Closed Pipeline. Int. J. Math. Trends Technol.-IJMTT 2022, 68, 22–35. [Google Scholar] [CrossRef]
- Swamee, P.K.; Jain, A.K. Explicit Equations for Pipe-Flow Problems. J. Hydraul. Div. 1976, 102, 657–664. [Google Scholar] [CrossRef]
- De Persis, C.; Kallesoe, C.S. Pressure regulation in nonlinear hydraulic networks by positive and quantized controls. IEEE Trans. Control. Syst. Technol. 2011, 19, 1371–1383. [Google Scholar] [CrossRef]
- Mirjalili, S. Evolutionary Algorithms and Neural Networks: Theory and Applications, 1st ed.; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Shao, Y.; Li, K.; Zhang, T.; Ao, W.; Chu, S. Pressure Sampling Design for Estimating Nodal Water Demand in Water Distribution Systems. Water Resour. Manag. 2024, 38, 1511–1527. [Google Scholar] [CrossRef]
- Bermúdez, J.R.; López-Estrada, F.R.; Besançon, G.; Valencia-Palomo, G.; Santos-Ruiz, I. Predictive Control in Water Distribution Systems for Leak Reduction and Pressure Management via a Pressure Reducing Valve. Processes 2022, 10, 1355. [Google Scholar] [CrossRef]
- Gómez-Coronel, L.; Santos-Ruiz, I.; Torres, L.; López-Estrada, F.; Delgado-Aguinaga, J. Model Calibration for a Hydraulic Network Using Genetic Algorithms. Mem. Congr. Nac. Control Automático 2022, 146–251. [Google Scholar] [CrossRef]
- Bermúdez, J.; Santos-Ruiz, I.; López-Estrada, F.; Torres, L.; Puig, V. Diseño y modelado dinámico de una planta piloto para detección de fugas hidráulicas. In Proceedings of the Congreso Nacional de Control Automático CNCA, Monterrey, Mexico, 4–6 October 2017. [Google Scholar]
Parameter | Value |
---|---|
Density of water, | 995.736 kg/m3 |
Kinematic viscosity, | 0.803 × 10−6 m2/s |
Gravity acceleration, g | 9.81 m/s2 |
Valve coefficient, | 1.156 |
Relative roughness, | 0.347 × 10−4 |
Pipe diameter, d | 0.048 m |
Pressure wave velocity, c | 422.754 m/s |
Lenghts and | 38.94 m |
Lenght | 31.056 m |
Lenghts and | 38.94 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez, J.-R.; Gómez-Coronel, L.; López-Estrada, F.-R.; Besançon, G.; Santos-Ruiz, I. A Hybrid Data-Driven and Model-Based Approach for Leak Reduction in Water Distribution Systems Using LQR and Genetic Algorithms. Processes 2024, 12, 1805. https://doi.org/10.3390/pr12091805
Bermúdez J-R, Gómez-Coronel L, López-Estrada F-R, Besançon G, Santos-Ruiz I. A Hybrid Data-Driven and Model-Based Approach for Leak Reduction in Water Distribution Systems Using LQR and Genetic Algorithms. Processes. 2024; 12(9):1805. https://doi.org/10.3390/pr12091805
Chicago/Turabian StyleBermúdez, José-Roberto, Leonardo Gómez-Coronel, Francisco-Ronay López-Estrada, Gildas Besançon, and Ildeberto Santos-Ruiz. 2024. "A Hybrid Data-Driven and Model-Based Approach for Leak Reduction in Water Distribution Systems Using LQR and Genetic Algorithms" Processes 12, no. 9: 1805. https://doi.org/10.3390/pr12091805
APA StyleBermúdez, J.-R., Gómez-Coronel, L., López-Estrada, F.-R., Besançon, G., & Santos-Ruiz, I. (2024). A Hybrid Data-Driven and Model-Based Approach for Leak Reduction in Water Distribution Systems Using LQR and Genetic Algorithms. Processes, 12(9), 1805. https://doi.org/10.3390/pr12091805