Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Samples
- Eroded Metamorphic Rock: Found in higher elevations with steep or complex slopes, this soil is characterized by shale, sandstone, phyllite, and slates. It has a clayey texture with slow water infiltration and is prone to forming Catena due to topography and drainage patterns.
- Granite Origin: Derived from granite and diorite rocks, this soil also has a clayey texture and low water infiltration, making it susceptible to erosion. It is typically found in hilly areas with complex slopes.
- Fine Alluvial Sediment: Formed from fluvio-glacial sediments transported by rivers, this soil has a loamy–clayey texture and poor drainage. The thickness of these sediments varies significantly across the valley.
2.2. Sample Preparation
2.2.1. PLS Model Samples
2.2.2. Slurry Sample Preparation
2.3. TXRF Spectra and Data Acquisition
2.4. Quantification Methods
Analytical Figures of Merit (AFOM’s)
2.5. Background Values and Ecological Indices
3. Results
3.1. Classical Regression: Deconvolution
3.2. Machine Learning Regression: Partial Least Squares
3.3. Elliptical Joint Confidence Region (EJCR)
3.4. AFOM
3.5. Application in Soil Samples
3.6. Ecological Assessment of Viticultural Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Liu, L.; Feng, Q.; Okonkwo, C.U.; Zhang, X.; Chen, J.; Yang, S.; Yang, C. Heavy Metal Pollution near an Abandoned Mercury-Bearing Waste Recovery Enterprise in Southwestern China: Spatial Distribution and Its Sources in Soil and Plants. Environ. Res. 2024, 252, 118694. [Google Scholar] [CrossRef]
- Medina-González, G.; Medina, Y.; Muñoz, E.; Fuentes, P. Rapid and Convenient Assessment of Trace Element Contamination in Agricultural Soils through Slurry-TXRF and Ecological Indices: The Ñuble Region, Chile as a Case Study. Sustainability 2023, 15, 9190. [Google Scholar] [CrossRef]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Assessment of Heavy Metals Contamination in Soil. In Soil Pollution—An Emerging Threat to Agriculture; Environmental Chemistry for a Sustainable World; Springer Singapore: Singapore, 2017; Volume 10, pp. 155–191. ISBN 978-981-10-4273-7. [Google Scholar]
- Mao, J.; Liu, X.; Chen, B.; Luo, F.; Wu, X.; Jiang, D.; Luo, Z. Determination of Heavy Metals in Soil by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with Internal Standard Method. Electron. Sci. Technol. Appl. 2017, 4. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Abubakar, F.; Abdu, N. Ecological Risk Assessment of Heavy Metal-Contaminated Soils of Selected Villages in Zamfara State, Nigeria. SN Appl. Sci. 2021, 3, 168. [Google Scholar] [CrossRef]
- Al-Momani, I.F.; Al-Massaedh, A.A. Assessment of Heavy Metal Contamination in Roadside Soils along Irbid-Amman Highway, Jordan by ICP-OES. Jordan J. Chem. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Ahmad, I.; Ansari, T.M. An Assessment of Toxic Heavy Metals in Soil and Plants (Allium Cepa and Daucus Carota) by GFAAS. Int. J. Environ. Anal. Chem. 2022, 102, 1029–1048. [Google Scholar] [CrossRef]
- Ismičić-Tanjo, D.; Huremović, J.; Selović, A.; Šehović, E. Human Health Risk Assessment of Mercury in Soil–Plants System. Int. J. Environ. Res. 2021, 15, 797–805. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Marguí, E.; Kubala-Kukuś, A.; Banaś, D.; Machado, J.; Casal, D.; Pais, D.; Santos, J.P.; Pessanha, S. Evaluation of Different Analytical Approaches Using Total Reflection X-Ray Fluorescence Systems for Multielemental Analysis of Human Tissues with Different Adipose Content. Spectrochim. Acta Part B At. Spectrosc. 2022, 198, 106548. [Google Scholar] [CrossRef]
- Klockenkämper, R.; Bohlen, A. Von Total-Reflection X-Ray Fluorescence Analysis and Related Methods; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-98587-8. [Google Scholar]
- Liu, C.; Zhang, F.; Wang, X.; Chan, N.W.; Rahman, H.A.; Yang, S.; Tan, M.L. Assessing the Factors Influencing Water Quality Using Environment Water Quality Index and Partial Least Squares Structural Equation Model in the Ebinur Lake Watershed, Xinjiang, China. Environ. Sci. Pollut. Res. 2022, 29, 29033–29048. [Google Scholar] [CrossRef]
- Nagata, N.; Peralta-Zamora, P.G.; Poppi, R.J.; Perez, C.A.; Bueno, M.I.M.S. Multivariate Calibrations for the SR-TXRF Determination of Trace Concentrations of Lead and Arsenic in the Presence of Bromine. X-Ray Spectrom. 2006, 35, 79–84. [Google Scholar] [CrossRef]
- González, G.M.; Castillo, R.d.P.; Neira, J.Y. Multivariate Calibration for the Improvement of the Quantification of Cadmium in the Presence of Potassium as Interferent by Total Reflection X-Ray Fluorescence. X-Ray Spectrom. 2019, 48, 700–707. [Google Scholar] [CrossRef]
- Carvajal, M.; Jeldres, P.; Vergara, A.; Lobaina, E.; Olivares, M.; Meza, D.; Velásquez, A.; Dorta, F.; Jorquera, F.; Seeger, M.; et al. Bioremoval of Copper by Filamentous Fungi Isolated from Contaminated Soils of Puchuncaví-Ventanas Central Chile. Environ. Geochem. Health 2023, 45, 4275–4293. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Meza, F.; Calderón, R. Trace Element Content in Soil after a Sediment-Laden Flood in Northern Chile. J. Soils Sediments 2017, 17, 2500–2515. [Google Scholar] [CrossRef]
- Madrid, E.; Pino, J.A.; Muñoz, S.; Cardemil, F.; Martinez, F.; Berasaluce, M.; San Martín, S.; Reyes, J.; González-Miranda, I. Oxidative Damage Associated with Exposure to Heavy Metals Present in Topsoils in Central Chile. Environ. Geochem. Health 2023, 45, 9891–9901. [Google Scholar] [CrossRef] [PubMed]
- Rubinos, D.A.; Jerez, Ó.; Forghani, G.; Edraki, M.; Kelm, U. Geochemical Stability of Potentially Toxic Elements in Porphyry Copper-Mine Tailings from Chile as Linked to Ecological and Human Health Risks Assessment. Environ. Sci. Pollut. Res. 2021, 28, 57499–57529. [Google Scholar] [CrossRef]
- Tume, P.; González, E.; Reyes, F.; Fuentes, J.P.; Roca, N.; Bech, J.; Medina, G. Sources Analysis and Health Risk Assessment of Trace Elements in Urban Soils of Hualpen, Chile. Catena 2019, 175, 304–316. [Google Scholar] [CrossRef]
- Tume, P.; Melipichún, T.; Ferraro, F.; Sepúlveda, B.; Roca, N.; Bech, J. Contamination of As, Cd, Cr, Hg and Pb in Soils in Arica Commune (Chile). Environ. Geochem. Health 2023, 45, 9199–9213. [Google Scholar] [CrossRef]
- Li, Z.; He, M.-Y.; Li, B.; Wen, X.; Zhou, J.; Cheng, Y.; Zhang, N.; Deng, L. Multi-Isotopic Composition (Li and B Isotopes) and Hydrochemistry Characterization of the Lakko Co Li-Rich Salt Lake in Tibet, China: Origin and Hydrological Processes. J. Hydrol. 2024, 630, 130714. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Y.; Peñuelas, J.; Zhao, Y.; Sardans, J.; Tetzlaff, D.; Liu, J.; Liu, X.; Yuan, H.; et al. Soil Ecological Stoichiometry Synchronously Regulates Stream Nitrogen and Phosphorus Concentrations and Ratios. Catena 2023, 231, 107357. [Google Scholar] [CrossRef]
- US EPA, O. SW-846 Test Method 6010D: Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6010d-inductively-coupled-plasma-optical-emission-spectrometry-icp-oes (accessed on 16 August 2024).
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of Heavy Metals Contamination in Urban Topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Serra, I.; Calderón-Orellana, A.; Hidalgo, M. Heroic Viticulture in Itata Valley, Chile: Characteristics and Challenges for the Development of Unique Wines in Southern Chilean Vineyards. In Latin American Viticulture Adaptation to Climate Change: Perspectives and Challenges of Viticulture Facing up Global Warming; Gutiérrez Gamboa, G., Fourment, M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 215–228. ISBN 978-3-031-51325-1. [Google Scholar]
- Stolpe, B.N. Descripciones de Los Principales Suelos de La VIII Región de Chile; Universidad de Concepción: Concepción, Chile, 2006. [Google Scholar]
- Protocolo de Toma de Muestras de Suelos|SAG. Available online: https://www.sag.gob.cl/content/protocolo-de-toma-de-muestras-de-suelos (accessed on 21 June 2024).
- Kang, Z.; Wang, S.; Qin, J.; Wu, R.; Li, H. Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Paddy Fields of Fujian Province, China. Sci. Rep. 2020, 10, 12244. [Google Scholar] [CrossRef]
- Feng, F.; Jiang, Y.; Jia, Y.; Lian, X.; Shang, C.; Zhao, M. Exogenous-Organic-Matter-Driven Mobilization of Groundwater Arsenic. Environ. Sci. Ecotechnol. 2023, 15, 100243. [Google Scholar] [CrossRef] [PubMed]
- XRF Software. Available online: https://www.bruker.com/en/products-and-solutions/elemental-analyzers/xrf-spectrometers/xrf-software.html (accessed on 21 June 2024).
- Pirouette Software, Version 4.5; Infometrix Inc.: Bothell, WA, USA, 2014.
- Kusumiyati; Mubarok, S.; Sutari, W.; Hadiwijaya, Y. Application of Spectra Pre-Treatments on Firmness Assessment of Intact Sapodilla Using Vis-Nir Spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2021, 644, 012001. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Montesinos López, O.A., Montesinos López, A., Crossa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139. ISBN 978-3-030-89010-0. [Google Scholar]
- Westad, F.; Marini, F. Variable Selection and Redundancy in Multivariate Regression Models. Front. Anal. Sci. 2022, 2, 897605. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Domínguez-Manzano, J.; Muñoz de la Peña, A.; Durán-Merás, I. Second-Order Calibration in Combination with Fluorescence Fibre-Optic Data Modelling as a Novel Approach for Monitoring the Maturation Stage of Plums. Chemom. Intell. Lab. Syst. 2020, 199, 103980. [Google Scholar] [CrossRef]
- Beh, E.J. Elliptical Confidence Regions for Simple Correspondence Analysis. J. Stat. Plan. Inference 2010, 140, 2582–2588. [Google Scholar] [CrossRef]
- Short, S.M.; Cogdill, R.P.; Anderson, C.A. Determination of Figures of Merit for Near-Infrared and Raman Spectrometry by Net Analyte Signal Analysis for a 4-Component Solid Dosage System. AAPS PharmSciTech 2007, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- ISO 19258:2018(En); Soil Quality—Guidance on the Determination of Background Values. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:19258:ed-2:v1:en (accessed on 21 June 2024).
- Reimann, C.; de Caritat, P. Distinguishing between Natural and Anthropogenic Sources for Elements in the Environment: Regional Geochemical Surveys versus Enrichment Factors. Sci. Total Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination—A Review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Samuel, B.; Solomon, S.; Daniel, F.; Zinabu, G.M.; Riise, G. Heavy Metals Contamination of Soil in the Vicinity of Hawassa Industrial Zone, Ethiopia. J. Appl. Sci. Environ. Manag. 2020, 24, 1447–1454. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, L.; Zhao, X.; Lian, J.; Zhang, Z. Accumulation and Potential Sources of Heavy Metals in Soils of the Hetao Area, Inner Mongolia, China. Pedosphere 2020, 30, 244–252. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Towett, E.K.; Shepherd, K.D.; Cadisch, G. Quantification of Total Element Concentrations in Soils Using Total X-Ray Fluorescence Spectroscopy (TXRF). Sci. Total Environ. 2013, 463–464, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Bilo, F.; Borgese, L.; Cazzago, D.; Zacco, A.; Bontempi, E.; Guarneri, R.; Bernardello, M.; Attuati, S.; Lazo, P.; Depero, L.E. TXRF Analysis of Soils and Sediments to Assess Environmental Contamination. Environ. Sci. Pollut. Res. 2014, 21, 13208–13214. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Quiñones, F.R.; Módenes, A.N.; dos Santos, J.; Obregón, P.L.; de Pauli, A.R. Insights on Limits of Detection, Precision and Accuracy in TXRF Analysis of Trace and Major Elements in Environmental Solid Suspensions. Appl. Radiat. Isot. 2018, 137, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gong, Y.; Miao, Y.; Guo, J.; Long, H.; Feng, Q.; Chen, Y. New Trends in Pollution Prevention and Control Technology for Healthcare and Medical Waste Disposal in China. Processes 2024, 12, 7. [Google Scholar] [CrossRef]
- Khatun, J.; Intekhab, A.; Dhak, D. Effect of Uncontrolled Fertilization and Heavy Metal Toxicity Associated with Arsenic(As), Lead(Pb) and Cadmium (Cd), and Possible Remediation. Toxicology 2022, 477, 153274. [Google Scholar] [CrossRef] [PubMed]
- Inumaru, J.; Hasegawa, T.; Shirai, H.; Nishida, H.; Noda, N.; Ohyama, S. 1—Fossil Fuels Combustion and Environmental Issues. In Advances in Power Boilers; Ozawa, M., Asano, H., Eds.; JSME Series in Thermal and Nuclear Power Generation; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 1–56. ISBN 978-0-12-820360-6. [Google Scholar]
- Bundschuh, J.; Schneider, J.; Alam, M.A.; Niazi, N.K.; Herath, I.; Parvez, F.; Tomaszewska, B.; Guilherme, L.R.G.; Maity, J.P.; López, D.L.; et al. Seven Potential Sources of Arsenic Pollution in Latin America and Their Environmental and Health Impacts. Sci. Total Environ. 2021, 780, 146274. [Google Scholar] [CrossRef]
- Nakagoe, S.; Olivares, J.C.; García, L.; Yubero, F.; Monteiro, M.; Mereles, L.; Diez-Pérez-Núñez, D. Validación de un método analítico para la determinación de arsénico total en muestras de suelo por espectrofotometría de absorción atómica con generación de hidruros. Innotec 2023, 25, e635. [Google Scholar] [CrossRef]
- Sabol, J. Major Analytical Methods for Determining Lead in Environmental and Biological Samples. In Lead in Plants and the Environment; Gupta, D.K., Chatterjee, S., Walther, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–13. ISBN 978-3-030-21638-2. [Google Scholar]
Sample | As (mg kg−1) | Pb (mg kg−1) |
---|---|---|
C1 | 10 | 34 |
C2 | 12 | 72 |
C3 | 48 | 13 |
C4 | 42 | 20 |
C5 | 37 | 67 |
C6 | 33 | 15 |
C7 | 33 | 19 |
C8 | 32 | 49 |
C9 | 8 | 39 |
C10 | 43 | 65 |
C11 | 35 | 36 |
C12 | 49 | 5 |
C13 | 10 | 4 |
C14 | 45 | 78 |
C15 | 13 | 31 |
C16 | 33 | 69 |
C17 | 41 | 36 |
C18 | 24 | 22 |
C19 | 4 | 36 |
C20 | 7 | 72 |
C21 | 28 | 23 |
C22 | 33 | 36 |
C23 | 42 | 18 |
C24 | 36 | 47 |
C25 | 0 | 43 |
C26 | 12 | 27 |
Range | 49 | 74 |
Minimum | 0 | 4 |
Maximum | 49 | 78 |
Sample | As (mg kg−1) | Pb (mg kg−1) |
---|---|---|
V1 | 36 | 6 |
V2 | 19 | 54 |
V3 | 1 | 32 |
V4 | 12 | 51 |
V5 | 33 | 78 |
V6 | 16 | 42 |
V7 | 21 | 71 |
V8 | 21 | 7 |
GEOI Group | Level of Contamination |
---|---|
GEOI ≤ 0 | Uncontaminated |
0 < GEOI ≤ 1 | Slightly contaminated |
1 < GEOI ≤ 2 | Moderately contaminated |
2 < GEOI ≤ 3 | Moderately to heavily contaminated |
3 < GEOI ≤ 4 | Heavily contaminated |
4 < GEOI ≤ 5 | Heavily to extremely contaminated |
GEOI > 5 | Extremely contaminated |
EF Group | Level of Contamination |
---|---|
EF < 2 | Deficiency to minimal enrichment |
2 < EF < 5 | Moderate enrichment |
5 < EF < 20 | Significant enrichment |
20 < EF < 40 | Very high enrichment |
EF > 40 | Extremely high enrichment |
CF Group | Level of Contamination |
CF < 1 | Low contamination |
1 < CF < 3 | Moderate contamination |
3 < CF < 6 | Considerable contamination |
CF > 6 | Very high contamination |
Sample | Concentration (mg kg−1) | Internal Standardization (mg kg−1) | Relative Bias (%) | PLS (mg kg−1) | Relative Bias (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
As | Pb | As | Pb | As | Pb | As | Pb | As | Pb | |
A | 36 | 6 | 45.3 | 8.1 | 25.8 | 35.0 | 39.8 | 7.2 | 10.6 | 20.0 |
B | 19 | 54 | 24.2 | 68.2 | 27.4 | 26.3 | 15.2 | 62.4 | −20.0 | 15.6 |
C | 1 | 32 | 2.5 | 33.9 | 150.0 | 5.9 | 1.9 | 31.4 | 90.0 | −1.9 |
D | 12 | 51 | 16.2 | 60.3 | 35.0 | 18.2 | 9.3 | 56.6 | −22.5 | 11.0 |
E | 33 | 80 | 40.3 | 87.6 | 22.1 | 9.5 | 38.5 | 83.4 | 16.7 | 4.3 |
F | 16 | 42 | 18.5 | 52.2 | 15.6 | 24.3 | 18.2 | 37.4 | 13.8 | −11.0 |
G | 21 | 71 | 28.3 | 98.1 | 34.8 | 38.2 | 17.3 | 64.2 | −17.6 | −9.6 |
H | 21 | 7 | 23.5 | 12.2 | 11.9 | 74.3 | 22.3 | 10.8 | 6.2 | 54.3 |
RMSEP (mg kg−1) | 5.6 | 12.3 | 3.3 | 5.0 | ||||||
RMSEP (%) | 15.6 | 18.9 | 9.4 | 6.8 |
As Model | Pb Model | |
---|---|---|
RMSECV (mg kg−1) | 2.95 | 3.92 |
rVal | 0.981 | 0.986 |
RMSEP (mg kg−1) | 3.31 | 5.03 |
rPred | 0.972 | 0.982 |
Calibration Samples | 26 | |
Number of Variables | 257 | |
Pretreatment | Mean-centering | |
Latent Variables | 2 | |
Range [As] (mg kg−1) | 0 to 49 | |
Range [Pb] (mg kg−1) | 4 to 78 |
Figure of Merit | Internal Standard | PLS | ||
---|---|---|---|---|
As | Pb | As | Pb | |
LOD (mg kg−1) | 5.42 × 10−2 | 6.28 × 10−2 | 2.56 × 10−4 | 3.48 × 10−4 |
LOQ (mg kg−1) | 1.64 × 10−1 | 1.90 × 10−1 | 7.69 × 10−4 | 1.05 × 10−3 |
Sensitivity (counts (mg kg−1)−1) | 432 | 298 | 474 | 402 |
Analytical Sensitivity ((mg kg−1)−1) | 18.3 | 12.7 | 59.6 | 63.3 |
Certified Value | Internal Standard (n = 3) | PLS Model (n = 3) | ||||
---|---|---|---|---|---|---|
As | Pb | As | Pb | As | Pb | |
Mean (mg kg−1) | 45.5 | 68.1 | 55.3 | 79.2 | 51.2 | 63.2 |
SD 1 | 4.45 | 7.6 | 6.23 | 11.2 | 7.23 | 8.23 |
RSD 2 (%) | 9.78 | 11.16 | 11.27 | 14.14 | 14.12 | 13.02 |
p (α = 0.05) | - | - | 0.077 | 0.215 | 0.31 | 0.483 |
Median | Min | Percentile | Max | Background Upper Limit | Outliers (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 95 | ||||||
As | 2.34 | 0.56 | 0.92 | 1.24 | 2.34 | 3.45 | 4.72 | 5.01 | 0.83 | 95.8 |
Pb | 22.5 | 6.02 | 7.45 | 13.0 | 22.5 | 31.1 | 42.7 | 45.5 | 6.90 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-González, G.; Medina, Y.; Muñoz, E.; Andrade, P.; Cruz, J.; Rodriguez-Gallo, Y.; Matus-Bello, A. Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile. Processes 2024, 12, 1760. https://doi.org/10.3390/pr12081760
Medina-González G, Medina Y, Muñoz E, Andrade P, Cruz J, Rodriguez-Gallo Y, Matus-Bello A. Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile. Processes. 2024; 12(8):1760. https://doi.org/10.3390/pr12081760
Chicago/Turabian StyleMedina-González, Guillermo, Yelena Medina, Enrique Muñoz, Paola Andrade, Jordi Cruz, Yakdiel Rodriguez-Gallo, and Alison Matus-Bello. 2024. "Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile" Processes 12, no. 8: 1760. https://doi.org/10.3390/pr12081760
APA StyleMedina-González, G., Medina, Y., Muñoz, E., Andrade, P., Cruz, J., Rodriguez-Gallo, Y., & Matus-Bello, A. (2024). Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile. Processes, 12(8), 1760. https://doi.org/10.3390/pr12081760