A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study
Abstract
:1. Introduction
2. Field Background
3. Methodology
3.1. Data Preparation
3.2. ANN Model Learning
3.3. Extracting Equation from the Optimized ANN Model
3.4. Testing the Suggested Equation for Pore Pressure
4. Results and Discussion
4.1. Learning the Artificial Neural Network Model
4.2. Testing the Suggested Equation for Pressure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, B.E.; Ulmishek, G.F.; Slavin, V.I. Abnormal Pressures in Hydrocarbon Environments. In AAPG Memoir 70; AAPG: Tulsa, OK, USA, 1998. [Google Scholar] [CrossRef]
- Ernanda; Primasty, A.Q.T.; Akbar, K.A. Detecting Overpressure Using the Eaton and Equivalent Depth Methods in Offshore Nova Scotia, Canada. IOP Conf. Ser. Earth Environ. Sci. 2018, 132, 012016. [Google Scholar] [CrossRef]
- Adams, N.; Charrier, T. Drilling Engineering: A Complete Well Planning Approach; PennWell Publishing Company: Tulsa, OK, USA, 1985. [Google Scholar]
- Rabia, H. Well Engineering & Construction; Entrac Consulting: Houston, TX, USA, 2001; ISBN 9780954108700. [Google Scholar]
- Legkokonets, V.A.; Islamov, S.R.; Mardashov, D.V. Multifactor Analysis of Well Killing Operations on Oil and Gas Condensate Field with a Fractured Reservoir. In Proceedings of the International Forum-Contest of Young Researchers: Topical Issues of Rational Use of Mineral Resources; Taylor & Francis: London, UK, 2019; pp. 111–118. [Google Scholar]
- Islamov, S.; Bondarenko, A.; Korobov, G.; Podoprigora, D. Complex Algorithm for Developing Effective Kill Fluids for Oil and Gas Condensate Reservoirs. Int. J. Civ. Eng. Technol. 2019, 10, 2697–2713. [Google Scholar]
- Aadnoy, B.S. Modern Well Design; CRC Press: London, UK, 2011; ISBN 9780429213168. [Google Scholar]
- Hossain, M.E.; Al-Majed, A.A. Fundamentals of Sustainable Drilling Engineering; Wiley: Hoboken, NJ, USA, 2015; ISBN 9780470878170. [Google Scholar]
- Ganguli, S.S.; Sen, S. Investigation of Present-Day in-Situ Stresses and Pore Pressure in the South Cambay Basin, Western India: Implications for Drilling, Reservoir Development and Fault Reactivation. Mar. Pet. Geol. 2020, 118, 104422. [Google Scholar] [CrossRef]
- Radwan, A.E.; Abudeif, A.M.; Attia, M.M.; Mohammed, M.A. Pore and Fracture Pressure Modeling Using Direct and Indirect Methods in Badri Field, Gulf of Suez, Egypt. J. Afr. Earth Sci. 2019, 156, 133–143. [Google Scholar] [CrossRef]
- Singha, D.K.; Chatterjee, R.; Sen, M.K.; Sain, K. Pore Pressure Prediction in Gas-Hydrate Bearing Sediments of Krishna–Godavari Basin, India. Mar. Geol. 2014, 357, 1–11. [Google Scholar] [CrossRef]
- Zhang, J. Pore Pressure Prediction from Well Logs: Methods, Modifications, and New Approaches. Earth-Sci. Rev. 2011, 108, 50–63. [Google Scholar] [CrossRef]
- Gasimli, N.; Mahmoud, M.; Hassan, A.; Shahzad Kamal, M.; Patil, S.; Al-Abdrabalnabi, R. Iron Sulfide Scale Inhibition through Adsorption of Chelating Agents. In Proceedings of the SPE Annual Technical Conference and Exhibition; SPE: Houston, TX, USA, 2022. [Google Scholar]
- Kiomourtzi, P. Depositional Environments and Hydrocarbon Potential Basins in the North Aegean Sea. Ph.D. Thesis, University of Patras, Patras, Greece, 2016. [Google Scholar]
- Proedrou, P.; Papaconstantinou, P. Prinos Basin—A Model for Exploration. In Proceedings of the 36th Geological Society of Greece Conference, vol. XXXV; Geological Society of Greece: Thessaloniki, Greece, 2004; pp. 327–333. [Google Scholar]
- Kiomourtzi, P.; Pasadakis, N.; Zelilidis, A. Source Rock and Depositional Environment Study of Three Hydrocarbon Fields in Prinos–Kavala Basin (North Aegean). Open Pet. Eng. J. 2008, 1, 16–29. [Google Scholar] [CrossRef]
- Pollak, W.H. Structural and Lithological Development of the Prinos-Kavala Basin, Sea of Thrace, Greece. In Proceedings of the VIIth International Congress on Mediterranean Neogene, Athens, Greece, 27 September–2 October 1979; pp. 1003–1011. [Google Scholar]
- Proedrou, P. The Evaporite Formation in the Nestos-Prinos Graben in the Northern Aegean Sea. In Proceedings of the VIIth International Congress on Mediterranean Neogene, Athens, Greece, 27 September–2 October 1979; pp. 1013–1020. [Google Scholar]
- Proedrou, P.; Sidiropoulos, T. Prinos Field—Greece, Aegean Basin, Structural Traps. In Treatise of Petroleum Geology Atlas of Oil and Gas Fields; AAPG: Tulsa, OK, USA, 1992; ISBN 9780891815884. [Google Scholar]
- Kiomourtzi, P.; Pasadakis, N.; Zelilidis, A. Geochemical Characterization of Satellite Hydrocarbon Formations in Prinos-Kavala Basin (North Greece). Bull. Geol. Soc. Greece 2007, 40, 839. [Google Scholar] [CrossRef]
- Choustoulakis, E. Detection of Gas in Sandstone Reservoir Using AVO Analysis in Prinos Basin. Master’s Thesis, Technical University of Crete, Kounoupidiana, Greece, 2015. [Google Scholar]
- Fukushima, K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- Hramov, A.E.; Frolov, N.S.; Maksimenko, V.A.; Makarov, V.V.; Koronovskii, A.A.; Garcia-Prieto, J.; Antón-Toro, L.F.; Maestú, F.; Pisarchik, A.N. Artificial Neural Network Detects Human Uncertainty. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 033607. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Farber, R. CUDA for Machine Learning and Optimization. In CUDA Application Design and Development; Elsevier: Amsterdam, The Netherlands, 2011; pp. 33–61. [Google Scholar]
- Saputra, W.; Tulus; Zarlis, M.; Sembiring, R.W.; Hartama, D. Analysis Resilient Algorithm on Artificial Neural Network Backpropagation. J. Phys. Conf. Ser. 2017, 930, 012035. [Google Scholar] [CrossRef]
- Wu, D.; Huang, H.; Qiu, S.; Liu, Y.; Wu, Y.; Ren, Y.; Mou, J. Application of Bayesian Regularization Back Propagation Neural Network in Sensorless Measurement of Pump Operational State. Energy Rep. 2022, 8, 3041–3050. [Google Scholar] [CrossRef]
- Menon, A.; Mehrotra, K.; Mohan, C.K.; Ranka, S. Characterization of a Class of Sigmoid Functions with Applications to Neural Networks. Neural Netw. 1996, 9, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Agarwal, S.; Kumar, V.; Raj, M.; Ray, B.; Banerjee, A. Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function. In Communications in Computer and Information Science; Springer: Singapore, 2019; pp. 47–60. [Google Scholar]
- Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y.; Cui, P. New Fractional Derivative with Sigmoid Function as the Kernel and Its Models. Chin. J. Phys. 2020, 68, 533–541. [Google Scholar] [CrossRef]
- Siddig, O.; Abdulhamid Mahmoud, A.; Elkatatny, S.; Soupios, P. Utilization of Artificial Neural Network in Predicting the Total Organic Carbon in Devonian Shale Using the Conventional Well Logs and the Spectral Gamma Ray. Comput. Intell. Neurosci. 2021, 2021, 2486046. [Google Scholar] [CrossRef] [PubMed]
- Khormali, A.; Ahmadi, S. Prediction of Barium Sulfate Precipitation in Dynamic Tube Blocking Tests and Its Inhibition for Waterflooding Application Using Response Surface Methodology. J. Pet. Explor. Prod. Technol. 2023, 13, 2267–2281. [Google Scholar] [CrossRef]
- Nino-Adan, I.; Portillo, E.; Landa-Torres, I.; Manjarres, D. Normalization Influence on ANN-Based Models Performance: A New Proposal for Features’ Contribution Analysis. IEEE Access 2021, 9, 125462–125477. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Djordjević, K.L.; Jordović-Pavlović, M.I.; Ćojbašić, Ž.M.; Galović, S.P.; Popović, M.N.; Nešić, M.V.; Markushev, D.D. Influence of Data Scaling and Normalization on Overall Neural Network Performances in Photoacoustics. Opt. Quantum Electron. 2022, 54, 501. [Google Scholar] [CrossRef]
- Sola, J.; Sevilla, J. Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Maghrebi, M.; Sammut, C.; Waller, T.S. Predicting the Duration of Concrete Operations via Artificial Neural Network and by Focusing on Supply Chain Parameters. Build. Res. J. 2014, 61, 1–14. [Google Scholar] [CrossRef]
- Ramachandra, S.; Durodola, J.F.; Fellows, N.A.; Gerguri, S.; Thite, A. Experimental Validation of an ANN Model for Random Loading Fatigue Analysis. Int. J. Fatigue 2019, 126, 112–121. [Google Scholar] [CrossRef]
Parameter | Optimum Value |
---|---|
Training data points | 42 |
Training/testing data ratio | 91/9 |
Training layers | Single |
Number of neurons | 23 |
Training function | Bayesian regularization backpropagation |
Transferring function | Logarithmic sigmoidal function |
Temp. (°C) | Porosity (frac.) | Sw (frac.) | Pore Pressure (psi) | |
---|---|---|---|---|
Minimum | 137.3 | 0.037 | 0.001 | 4254 |
Maximum | 149.2 | 0.182 | 0.999 | 6496 |
Average | 143.0 | 0.104 | 0.510 | 5473 |
Mean | 142.9 | 0.098 | 0.352 | 5440 |
Median | 142.8 | 0.106 | 0.473 | 5165 |
Standard deviation | 3.139 | 0.036 | 0.289 | 615.5 |
Number of Neurons | Input Layer | Output Layer | |||||
---|---|---|---|---|---|---|---|
Weights (w1) | Biases (b1) | Weights (w2) | Bias (b2) | ||||
j = 1 | j = 2 | j = 3 | |||||
Number of neutrons | i = 1 | −1.825 | 2.375 | 1.390 | 4.202 | −1.042 | −0.517 |
i = 2 | −1.431 | 3.561 | 0.507 | 3.376 | −1.318 | ||
i = 3 | 1.006 | −3.680 | 0.470 | −2.797 | −0.071 | ||
i = 4 | −1.945 | 2.549 | 2.255 | 2.814 | 1.344 | ||
i = 5 | 2.297 | −1.653 | 2.230 | −2.424 | 0.362 | ||
i = 6 | −2.276 | 2.811 | 0.491 | 1.865 | 0.698 | ||
i = 7 | 2.451 | 0.371 | −3.713 | −1.987 | 3.041 | ||
i = 8 | 1.078 | −3.616 | 1.589 | −0.991 | 1.077 | ||
i = 9 | −0.665 | −3.647 | −2.651 | 0.932 | −1.268 | ||
i = 10 | 3.202 | −2.151 | −0.666 | −0.737 | −1.491 | ||
i = 11 | 0.972 | 3.684 | −3.220 | −0.105 | −1.330 | ||
i = 12 | −0.597 | −0.094 | 4.154 | 0.021 | 0.340 | ||
i = 13 | −3.951 | −0.706 | −1.273 | −0.564 | −1.303 | ||
i = 14 | −2.755 | 0.112 | −2.463 | −0.358 | 0.044 | ||
i = 15 | −1.428 | 0.139 | 4.810 | −1.523 | −2.601 | ||
i = 16 | −0.660 | 1.727 | −3.608 | 0.118 | −0.939 | ||
i = 17 | −1.077 | −1.853 | −2.772 | −2.021 | −0.915 | ||
i = 18 | −3.461 | 1.505 | −0.247 | −1.509 | 0.546 | ||
i = 19 | −1.757 | 2.869 | −1.241 | −2.478 | −0.020 | ||
i = 20 | 1.473 | −3.009 | −1.478 | 2.658 | 0.130 | ||
i = 21 | 0.104 | −4.950 | 0.983 | 3.967 | 3.653 | ||
i = 22 | 1.288 | 3.016 | 1.916 | 2.977 | 0.020 | ||
i = 23 | −3.257 | 2.202 | −1.787 | −3.718 | 2.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, A.A.; Alzayer, B.M.; Panagopoulos, G.; Kiomourtzi, P.; Kirmizakis, P.; Elkatatny, S.; Soupios, P. A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study. Processes 2024, 12, 664. https://doi.org/10.3390/pr12040664
Mahmoud AA, Alzayer BM, Panagopoulos G, Kiomourtzi P, Kirmizakis P, Elkatatny S, Soupios P. A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study. Processes. 2024; 12(4):664. https://doi.org/10.3390/pr12040664
Chicago/Turabian StyleMahmoud, Ahmed Abdulhamid, Bassam Mohsen Alzayer, George Panagopoulos, Paschalia Kiomourtzi, Panagiotis Kirmizakis, Salaheldin Elkatatny, and Pantelis Soupios. 2024. "A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study" Processes 12, no. 4: 664. https://doi.org/10.3390/pr12040664
APA StyleMahmoud, A. A., Alzayer, B. M., Panagopoulos, G., Kiomourtzi, P., Kirmizakis, P., Elkatatny, S., & Soupios, P. (2024). A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study. Processes, 12(4), 664. https://doi.org/10.3390/pr12040664