Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model
Abstract
1. Introduction
2. Multilayer Perceptron
3. Results and Discussion
Learning Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, X.L.; Zhang, S.J.; Lu, X.M. Hydroxyl Ammonium Ionic Liquids: Synthesis, Properties, and Solubility of SO2. J. Chem. Eng. Data 2007, 52, 596–599. [Google Scholar] [CrossRef]
- Li, G.; Qing, Z.; Xiangping, Z.; Lei, W.; Suojiang, Z.; Jianwei, L. Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria 2010, 297, 34–39. [Google Scholar] [CrossRef]
- Hamedi, N.; Rahimpour, M.R.; Keshavarz, P. Methane solubility in ionic liquids: Comparison of cubic-plus-association and modified Sanchez-lacome equations of states. Chem. Phys. Lett. 2020, 738, 136903. [Google Scholar] [CrossRef]
- Kurnia, K.A.; Matheswaran, P.; How, C.J.; Noh, M.H.; Kusumawati, Y. A comprehensive study on the impact of chemical structures of ionic liquids on the solubility of ethane. New J. Chem. 2020, 44, 11155–11163. [Google Scholar] [CrossRef]
- Liu, X.; Afzal, W.; Prausnitz, J.M. Solubilities of Small Hydrocarbons in Tetrabutylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate and in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Ind. Eng. Chem. Res. 2013, 52, 14975–14978. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Díaz-Valdés, J.F.; Valderrama, J.O. Consistency test of solubility data of ammonia in ionic liquids using the modified Peng–Robinson equation of Kwak and Mansoori. Fluid Phase Equilibria 2013, 348, 33–38. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Fierro, E.N.; Valderrama, J.O. Solubility of hydrogen sulfide in ionic liquids for gas removal processes using artificial neural networks. J. Environ. Chem. Eng. 2016, 4, 211–218. [Google Scholar] [CrossRef]
- Kurnia, K.A.; Matheswaran, P.; How, C.J.; Noh, M.H.; Kusumawati, Y. Solubility of Methane in Alkylpyridinium-Based Ionic Liquids at Temperatures between 298.15 and 343.15 K and Pressures up to 4 MPa. J. Chem. Eng. Data 2020, 65, 4642–4648. [Google Scholar] [CrossRef]
- Henni, N.; Henni, A.; Ibrahim, H. Solubility of carbon dioxide in promising methylimidazolium-based ionic liquids. Fluid Phase Equilibria 2023, 565, 113619. [Google Scholar] [CrossRef]
- Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A.N.; Jalili, A.H. Solubility of H2S in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]). J. Chem. Thermodyn. 2010, 55, 5839–5845. [Google Scholar] [CrossRef]
- Carvalho, P.J.; Coutinho, J.A.P. Non-ideality of Solutions of NH3, SO2, and H2S in Ionic Liquids and the Prediction of Their Solubilities Using the Flory−Huggins Model. Energy Fuels 2010, 24, 6662–6666. [Google Scholar] [CrossRef]
- Jalili, A.H.; Mehdizadeh, A.; Shokouhi, M.; Ahmadi, A.N.; Hosseini-Jenab, M.; Fateminassab, F. Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J. Chem. Thermodyn. 2010, 42, 1298–1303. [Google Scholar] [CrossRef]
- Shokouhi, M.; Adibi, M.; Jalili, A.H.; Hosseini-Jenab, M.; Mehdizadeh, A. Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate. J. Chem. Eng. Data 2009, 55, 1663–1668. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Solvents; ChemTec Publishing: Toronto, ON, Canada, 2001. [Google Scholar]
- Heintz, A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 2005, 37, 525–535. [Google Scholar] [CrossRef]
- Kokorin, A. (Ed.) Ionic Liquids: Applications and Perspectives; InTech: Rijeza, Croatia, 2010. [Google Scholar]
- Lei, Z.; Dai, C.; Wang, W.; Chen, B. UNIFAC Model for Ionic Liquid-CO2 Systems. AIChE J. 2014, 60, 716–729. [Google Scholar] [CrossRef]
- Scovazzo, P.; Camper, D.; Kieft, J.; Poshusta, J.; Koval, C.; Noble, R. Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2004, 43, 6855–6860. [Google Scholar] [CrossRef]
- Arce, A.; Earle, M.J.; Katdare, S.P.; Rodríguez, H.; Seddon, K.R. Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilibria 2007, 261, 427–433. [Google Scholar] [CrossRef]
- Santiago, R.S.; Santos, G.R.; Aznar, M. UNIQUAC correlation of liquid–liquid equilibrium in systems involving ionic liquids: The DFT–PCM approach. Fluid Phase Equilibria 2009, 278, 54–61. [Google Scholar] [CrossRef]
- Vega, L.F.; Vilaseca, O.; Llovell, F.; Andreu, J.S. Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives. Fluid Phase Equilibria 2010, 294, 15–30. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Barrientos, L.A.; Valderrama, J.O. Modeling and thermodynamic consistency of solubility data of refrigerants in ionic liquids. Int. J. Refrig. 2013, 36, 2242–2250. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Campusano, R.A.; Valderrama, J.O. Henry’s law constant as a function of temperatura and pressure to calcu-late the solubility of difluoromethane (R-32) in ionic liquids. Int. J. Refrig. 2020, 119, 401–409. [Google Scholar] [CrossRef]
- Fierro, E.N.; Faúndez, C.A.; Muñoz, A.S. Influence of thermodynamically inconsistent data on modeling the solubilities of refrigerants in ionic liquids using an artificial neural network. J. Mol. Liq. 2021, 337, 116417. [Google Scholar] [CrossRef]
- Fierro, E.N.; Faúndez, C.A.; Muñoz, A.S.; Cerda, P.I. Application of a Single Multilayer Perceptron Model to Predict the Solubility of CO2 in Different Ionic Liquids for Gas Removal Processes. Processes 2022, 10, 1686. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Díaz-Valdés, J.F.; Valderrama, J.O. Testing solubility data of H2S and SO2 in ionic liquids for sulfur-removal processes. Fluid Phase Equilibria 2014, 375, 152–160. [Google Scholar] [CrossRef]
- Faúndez, C.A.; Quiero, F.A.; Valderrama, J.O. Correlation of solubility data of ammonia in ionic liquids for gas separation processes using artificial neural networks. Comptes Rendus Chim. 2014, 17, 1094–1101. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Faúndez, C.A.; Díaz-Valdés, J.F. Equation of state dependency of thermodynamic consistency methods. Application to solubility data of gases in ionic liquids. Fluid Phase Equilibria 2017, 449, 76–82. [Google Scholar] [CrossRef]
- Althuluth, M.; Kroon, M.C.; Peters, C.J. Solubility of Methane in the Ionic Liquid 1-Ethyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate. Ind. Eng. Chem. Res. 2012, 51, 16709–16712. [Google Scholar] [CrossRef]
- Loreno, M.; Reis, R.A.; Mattedi, S.; Paredes, M.L. Predicting the solubility of carbon dioxide or methane in imidazolium-based ionic liquids with GC-sPC-SAFT equation of state. Fluid Phase Equilibria 2018, 479, 85–98. [Google Scholar] [CrossRef]
- Huang, X. Experimental and simulation study on the capture and separation of CO2/CH4 by alkali metal complex ionic liquid. Fuel 2022, 329, 125444. [Google Scholar] [CrossRef]
- Safamirzaei, M.; Modarress, H. Correlating and predicting low pressure solubility of gases in [bmim][BF4] by neural network molecular modeling. Thermochim. Acta 2012, 545, 125–130. [Google Scholar] [CrossRef]
- Behera, S.K.; Meher, S.K.; Park, H.-S. Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol. Environ. Policy 2014, 17, 443–453. [Google Scholar] [CrossRef]
- Nair, V.V.; Dhar, H.; Kumar, S.; Thalla, A.K.; Mukherjee, S.; Wong, J.W. Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor. Bioresour. Technol. 2016, 217, 90–99. [Google Scholar] [CrossRef]
- Dashti, A.; Harami, H.R.; Rezakazemi, M.; Shirazian, S. Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. J. Mol. Liq. 2018, 271, 661–669. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Forero, L.A.; Rojas, R.E. Extension of a group contribution method to estimate the critical prop-erties of ionic liquids of high molecular mass. Ind. Eng. Chem. Res. 2015, 54, 3480–3487. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Minsky, M.; Papert, S. Perceptron: An introduction to computational geometry. Camb. Tiass. HIT 1969, 479, 104. [Google Scholar]
- Raeissi, S.; Peters, C. High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria 2010, 294, 67–71. [Google Scholar] [CrossRef]
- Ramdin, M.; Amplianitis, A.; Bazhenov, S.; Volkov, A.; Volkov, V.; Vlugt, T.J.; de Loos, T.W. Solubility of CO2 and CH4 in ionic liquids: Ideal CO2/CH4 selectivity. Ind. Eng. Chem. Res. 2014, 53, 15427–15435. [Google Scholar] [CrossRef]
- Mirzaei, M.; Mokhtarani, B.; Badiei, A.; Sharifi, A. Solubility of carbon dioxide and methane in 1-hexyl-3-methylimidazolium nitrate ionic liquid, experimental and thermodynamic modeling. J. Chem. Thermodyn. 2018, 122, 31–37. [Google Scholar] [CrossRef]
- Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to Other Ionic Liquids. Acc. Chem. Res. 2007, 40, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, S.; Chen, Y.; Lu, X.; Dai, W.; Mori, R. Solubilities of Gases in 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures. J. Chem. Eng. Data 2006, 51, 645–647. [Google Scholar] [CrossRef]
- Sedghamiz, M.A.; Rasoolzadeh, A.; Rahimpour, M.R. The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids. J. CO2 Util. 2015, 9, 39–47. [Google Scholar] [CrossRef]
- Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A.H.; Richon, D. Artificial Neural Network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids. Chem. Eng. Sci. 2011, 66, 3039–3044. [Google Scholar] [CrossRef]
- Baghban, A.; Ahmadi, M.A.; Shahraki, B.H. Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches. J. Supercrit. Fluids 2015, 98, 50–64. [Google Scholar] [CrossRef]
- MATLAB (R2023a). MathWorks 2023. Available online: https://www.mathworks.com/ (accessed on 1 March 2023).
- Althuluth, M.; Kroon, M.C.; Peters, C.J. High pressure solubility of methane in the ionic liquid 1-hexyl-3-methylimidazolium tricyanomethanide. J. Supercrit. Fluids 2017, 128, 145–148. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Ribeiro, F.R.; Alcantara, M.L.; Pisoni, G.O.; Cabral, V.F.; Cardozo-Filho, L.; Mattedi, S. High pres-sure vapor-liquid equilibria for binary methane and protic ionic liquid based on propionate anions. Fluid Phase Equilibria 2016, 426, 65–74. [Google Scholar] [CrossRef]
- Alcantara, M.L.; Ferreira, P.I.; Pisoni, G.O.; Silva, A.K.; Cardozo-Filho, L.; Lião, L.M.; Pires, C.A.; Mattedi, S. High pressure vapor-liquid equilibria for binary protic ionic liquids + methane or carbon dioxide. Sep. Purif. Technol. 2018, 196, 32–40. [Google Scholar] [CrossRef]
- Bermejo, M.D.; Fieback, T.M.; Martín, Á. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling. J. Chem. Thermodyn. 2013, 58, 237–244. [Google Scholar] [CrossRef]
System | N | T(K) | P(MPa) | x1 | Reference |
---|---|---|---|---|---|
[C4mim][Tf2N] | 8 | 300.31–314.31 | 1.510–16.105 | 0.030–0.225 | [39] |
5 | 332.58–342.31 | 1.618–10.503 | 0.030–0.163 | ||
4 | 352.00–352.08 | 3.237–10.982 | 0.056–0.163 | ||
5 | 371.33–371.38 | 1.736–11.352 | 0.030–0.163 | ||
5 | 390.69–400.47 | 1.836–11.652 | 0.030–0.163 | ||
5 | 410.09–410.22 | 3.583–8.440 | 0.056–0.122 | ||
5 | 429.56–429.80 | 3.659–11.978 | 0.056–0.122 | ||
5 | 448.96–449.12 | 1.938–12.054 | 0.030–0.163 | ||
[C4py][BF4] | 6 | 298.15 | 1.670–3.910 | 0.012–0.026 | [8] |
5 | 313.15 | 1.770–3.910 | 0.011–0.023 | ||
5 | 328.15 | 2.140–4.120 | 0.012–0.022 | ||
4 | 343.15 | 2.370–3.890 | 0.012–0.020 | ||
[C4py][Tf2N] | 7 | 298.15 | 0.900–4.120 | 0.011–0.049 | |
6 | 313.15 | 1.360–4.030 | 0.014–0.047 | ||
7 | 328.15 | 1.030–4.150 | 0.011–0.042 | ||
6 | 343.15 | 1.310–3.990 | 0.012–0.036 | ||
[C6py][Tf2N] | 7 | 298.15 | 0.700–3.990 | 0.013–0.074 | |
7 | 313.15 | 0.720–3.940 | 0.012–0.066 | ||
7 | 328.15 | 0.930–3.990 | 0.014–0.060 | ||
6 | 343.15 | 1.270–3.920 | 0.019–0.054 | ||
[C2mim][dep] | 5 | 303.17–303.44 | 1.685–8.310 | 0.020–0.076 | [40] |
5 | 313.13–313.24 | 1.755–8.565 | 0.020–0.076 | ||
5 | 323.06–323.25 | 1.820–8.800 | 0.020–0.076 | ||
5 | 333.02–333.25 | 1.880–9.020 | 0.020–0.076 | ||
5 | 343.02–343.25 | 1.930–9.176 | 0.020–0.076 | ||
5 | 353.05–353.25 | 1.975–9.316 | 0.020–0.076 | ||
5 | 362.92–363.29 | 2.025–9.441 | 0.020–0.076 | ||
[C2mim][FAP] | 3 | 293.30–293.58 | 2.076–5.831 | 0.052–0.129 | [29] |
4 | 303.29–303.57 | 2.151–7.728 | 0.052–0.155 | ||
4 | 313.42–313.54 | 2.185–7.951 | 0.052–0.155 | ||
4 | 323.36–323.52 | 2.234–8.123 | 0.052–0.155 | ||
4 | 333.27–333.47 | 2.299–8.321 | 0.052–0.155 | ||
4 | 343.32–343.45 | 2.368–8.484 | 0.052–0.155 | ||
4 | 353.24–353.44 | 2.392–8.583 | 0.052–0.155 | ||
4 | 363.13–363.42 | 2.421–8.692 | 0.052–0.155 | ||
[C6mim][NO3] | 5 | 293.15 | 0.874–2.580 | 0.020–0.087 | [41] |
5 | 303.15 | 0.905–2.680 | 0.021–0.089 | ||
5 | 313.15 | 0.935–2.778 | 0.022–0.091 | ||
5 | 323.15 | 0.966–2.876 | 0.022–0.093 | ||
5 | 333.15 | 0.996–2.972 | 0.023–0.095 | ||
5 | 343.15 | 1.025–3.055 | 0.024–0.099 | ||
[C6mim][Tf2N] | 8 | 298.15 | 0.400–0.999 | 0.012–0.028 | [42] |
7 | 313.15 | 0.501–0.998 | 0.012–0.027 | ||
8 | 333.15 | 0.400–1.000 | 0.010–0.024 | ||
[C6mpy][Tf2N] | 8 | 298.15 | 0.400–0.999 | 0.012–0.028 | |
7 | 313.15 | 0.501–0.998 | 0.012–0.027 | ||
8 | 333.15 | 0.400–1.000 | 0.010–0.024 | ||
[tes][Tf2N] | 5 | 303.10–303.43 | 1.246–7.039 | 0.024–0.111 | [40] |
5 | 312.87–313.25 | 1.301–7.314 | 0.024–0.111 | ||
5 | 322.85–323.25 | 1.351–7.534 | 0.024–0.111 | ||
5 | 333.11–333.28 | 1.391–7.749 | 0.024–0.111 | ||
5 | 342.96–343.34 | 1.426–7.925 | 0.024–0.111 | ||
5 | 353.16–353.36 | 1.467–8.090 | 0.024–0.111 | ||
5 | 362.94–363.46 | 1.507–8.230 | 0.024–0.111 | ||
[thtdp][dca] | 7 | 302.13–303.38 | 1.428–9.638 | 0.079–0.343 | |
7 | 312.14–313.39 | 1.503–10.049 | 0.079–0.343 | ||
7 | 322.25–323.47 | 1.576–10.433 | 0.079–0.343 | ||
7 | 332.29–333.52 | 1.651–10.759 | 0.079–0.343 | ||
7 | 342.31–343.53 | 1.697–11.059 | 0.079–0.343 | ||
7 | 352.36–353.46 | 1.752–11.329 | 0.079–0.343 | ||
7 | 362.34–363.48 | 1.792–11.569 | 0.079–0.343 | ||
[thtdp][phos] | 6 | 302.00–303.25 | 1.015–9.708 | 0.107–0.496 | |
6 | 311.98–313.25 | 1.066–10.173 | 0.107–0.496 | ||
6 | 322.05–323.19 | 1.131–10.628 | 0.107–0.496 | ||
6 | 332.02–333.22 | 1.171–11.023 | 0.107–0.496 | ||
6 | 342.05–343.25 | 1.216–11.404 | 0.107–0.496 | ||
6 | 352.11–353.26 | 1.261–11.734 | 0.107–0.496 | ||
6 | 362.15–363.27 | 1.301–12.049 | 0.107–0.496 | ||
[toa][Tf2N] | 5 | 302.96–303.55 | 1.725–6.067 | 0.076–0.290 | |
5 | 312.94–313.28 | 1.815–6.332 | 0.076–0.290 | ||
5 | 322.92–323.33 | 1.905–6.588 | 0.076–0.290 | ||
5 | 332.96–333.53 | 1.336–6.848 | 0.076–0.290 | ||
5 | 343.21–343.65 | 1.386–7.103 | 0.076–0.290 | ||
5 | 353.22–353.75 | 1.436–7.328 | 0.076–0.290 | ||
5 | 363.25–363.72 | 1.481–7.543 | 0.076–0.290 | ||
TMGL | 8 | 308.00 | 2.560–9.660 | 0.012–0.043 | [43] |
7 | 318.00 | 3.510–9.990 | 0.013–0.039 | ||
7 | 328.00 | 3.690–10.340 | 0.010–0.031 |
System | IUPAC Name | Tc | Pc | Zc | ω |
---|---|---|---|---|---|
[C4mim][Tf2N] | 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | 1258.9 | 27.64 | 0.2592 | 0.3370 |
[C4py][BF4] | 1-Butylpyridinium tetrafluoroborato | 597.6 | 20.33 | 0.2652 | 0.8207 |
[C4py][Tf2N] | 1-Butylpyridinium bis(trifluorometanosulfonyl)imide | 1229.1 | 27.71 | 0.2666 | 0.2505 |
[C6py][Tf2N] | 1-Hexylpyridinium bis(trifluorometanosulfonyl)imide | 1252.3 | 23.93 | 0.2522 | 0.3383 |
[C2mim][dep] | 1-ethyl-3-methylimidazolium diethylphosphate | 877.2 | 21.47 | 0.2349 | 0.7219 |
[C2mim][FAP] | 1-ethyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate | 740.6 | 10.05 | 0.1944 | 1.3993 |
[C6mim][NO3] | 1-Hexyl-3-methylimidazolium nitrate | 991.8 | 23.16 | 0.2135 | 0.7242 |
[C6mim][Tf2N] | 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | 1293.3 | 23.89 | 0.2454 | 0.3874 |
[hmpy][Tf2N] | 1-Hexyl-1-methylpyrrolidinium bis(trifluorometanosulfonyl)imide | 1265.2 | 22.25 | 0.2439 | 0.4060 |
[tes][Tf2N] | triethylsulfonium bis(trifluoromethylsulfonyl)imide | 1189.9 | 21.90 | 0.2317 | 0.1603 |
[thtdp][dca] | trihexyltetradecylphosphonium dicyanamide | 1505.8 | 7.65 | 0.1388 | 1.0319 |
[thtdp][phos] | trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate | 1819.5 | 5.51 | 0.1157 | 0.0924 |
[toa][Tf2N] | methyltrioctylammonium bis(trifluoromethylsulfonyl)imide | 1347.6 | 10.64 | 0.1988 | 1.6063 |
TMGL | 1,1,3,3-tetramethylguanidium lactate | 816.9 | 27.18 | 0.2557 | 1.1188 |
1% TRAINING SECTION% 2% Reading independent variables for training 3p = xlsread(‘variables_X1_training’);p = p’; 4%Reading the dependent variable for training; 5t = xlsread(‘X1_for_training’);t = t’; 6% Normalization of all data (values between −1 and y +1) 7[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 8% Definition of ANN:(topology, activation functions, training algorithm) 9net = newff(minmax(pn),[6,6,1],{‘tansig’,’tansig’,’purelin’},’trainlm’); 10% Definition of frequency of visualization of errors during training 11net.trainParam.show = 10; 12% Definition of number of maximum iterations and global error between iterations 13net.trainParam.epochs = 1000; net.trainParam.goal = 1 × 10−4; 14% Network starts: reference random weights and gains 15w1 = net.IW{1,1}; w2 = net.LW{2,1}; w3 = net.LW{3,2}; 16b1 = net.b{1}; b2 = net.b{2}; b3 = net.b{3}; 17% First iteration with reference values and correlation coefficient 18before_training = sim(net,pn); 19corrbefore_training= corrcoef(before_training,tn); 20% Training process and results 21[net,tr] = train(net,pn,tn); after_training = sim(net,pn); 22% Back-Normalization of results, from values between −1 y and +1 to real values 23after_training = postmnmx(after_training,mint,maxt); after_training = after_training’; 24Res = sim(net,pn); 25% Saving results, correlated solubility in an Excel file 26dmwrite(‘X1_correlated.xls’,after_training,char(9)); 27save w 28%TESTING SECTION 29%Reading weight and other characteristics of the trained ANN saved in the file W 30load w 31% Reading of Excel file with new independent variables to predict 32pnew = xlsread(‘variables_sol_ prediction’); pnew = pnew’; 33% Normalization of all variables (values between −1 y and +1) 34pnewn = tramnmx(pnew,minp,maxp); 35% Testing the ANN obtaining the properties for the variables provided 36anewn = sim(net,pnewn); 37% Transformation of the normalized exits (between −1 y and +1) determined by the ANN to real values 38anew = postmnmx(anewn,mint,maxt); anew = anew’; 39% Saving the testing properties in an Excel file 40dlmwrite(‘solub_ testing.xls’,anew,char(9)); 41%PREDICTION SECTION 42%Reading weight and other characteristics of the trained ANN saved in the file W 43load w 44% Reading of Excel file with new independent variables to predict 45pnew = xlsread(‘variables_sol_ prediction’); pnew = pnew’; 46% Normalization of all variables (values between −1 y and +1) 47pnewn = tramnmx(pnew,minp,maxp); 48% Testing the ANN obtaining the properties for the variables provided 49anewn = sim(net,pnewn); 50% Transformation of the normalized exits (between −1 y and +1) determined by the ANN to real values 51anew = postmnmx(anewn,mint,maxt); anew = anew’; 52% Saving the predicted properties in an Excel file 53dlmwrite(‘solub_ predicted.xls’,anew,char(9)); |
Algorithm | Training Function | Run | Best Performance | |Δx1%|Training | |Δx1%|Testing |
---|---|---|---|---|---|
Levenberg–Marquardt | trainlm | 14 | 0.007 | 17.88 | 18.77 |
BFGS quasi-Newton | trainbfg | 37 | 0.027 | 17.40 | 18.24 |
One-step secant | trainoss | 10 | 0.0038 | 19.16 | 22.29 |
Resilient backpropagation | trainrp | 13 | 0.0042 | 18.46 | 20.05 |
Scaled conjugate gradient | trainscg | 16 | 0.0031 | 18.22 | 19.32 |
Fletch–Powell conjugate gradient | traincgf | 5 | 0.0032 | 19.16 | 20.17 |
Polak–Ribière conjugate gradient | traincgp | 26 | 0.0031 | 18.78 | 19.55 |
Variable learning rate | traingdx | 21 | 0.0076 | 23.44 | 22.76 |
Architecture | Np | Run | Training (396 Data Point) | Testing (22 Data Point) | Prediction (22 Data Point) | |||
|Δx1%| | |Δx1%|max | |Δx1%| | |Δx1%|max | |Δx1%| | |Δx1%|max | |||
4,6,2,1 | 47 | 50 | 4.33 | 57.43 | 3.49 | 14.87 | 3.78 | 16.81 |
4,6,3,1 | 55 | 1 | 4.83 | 59 | 3.89 | 23.16 | 4.37 | 16.79 |
4,6,4,1 | 63 | 21 | 4.2 | 41.23 | 4.48 | 19.57 | 3.55 | 15 |
4,6,5,1 | 71 | 5 | 3.31 | 30.33 | 4.16 | 26.33 | 2.77 | 13.28 |
4,6,6,1 | 79 | 27 | 4.76 | 56.52 | 3.64 | 13.14 | 3.86 | 18.59 |
4,6,7,1 | 87 | 13 | 4.28 | 63.36 | 4.85 | 13.08 | 3.1 | 9.8 |
4,6,8,1 | 95 | 6 | 4.5 | 54.71 | 5 | 14.51 | 3.78 | 15.68 |
4,6,9,1 | 103 | 48 | 4.61 | 47.92 | 4.42 | 13.69 | 3.22 | 15.16 |
4,6,10,1 | 111 | 26 | 3.63 | 37.64 | 5.78 | 20 | 1.99 | 10.17 |
4,5,2,1 | 40 | 42 | 4.61 | 32.29 | 5.86 | 29.86 | 3.58 | 15.76 |
4,5,3,1 | 47 | 33 | 5.06 | 37.2 | 4.76 | 22.9 | 3.87 | 14.89 |
4,5,4,1 | 54 | 28 | 3.81 | 27.07 | 3.81 | 17.31 | 3.68 | 13.33 |
4,5,5,1 | 61 | 31 | 5.17 | 49.05 | 4.62 | 16.53 | 3.38 | 15.18 |
4,5,6,1 | 68 | 9 | 4.32 | 51.52 | 4.71 | 35.03 | 3.34 | 10.67 |
4,5,7,1 | 75 | 44 | 4.44 | 37.39 | 4.9 | 18.89 | 3.54 | 12.82 |
4,5,8,2 | 82 | 1 | 4.56 | 30.84 | 3.41 | 11.93 | 3.49 | 12.95 |
4,5,9,2 | 89 | 14 | 4.25 | 36.35 | 5.86 | 27.55 | 2.93 | 9.97 |
4,5,10,2 | 96 | 18 | 3.44 | 33.84 | 4.44 | 12.74 | 2.24 | 7.19 |
4,4,2,1 | 33 | 5 | 5.68 | 55.22 | 6.2 | 23.08 | 5.86 | 21.88 |
4,4,3,1 | 39 | 38 | 7.52 | 57.43 | 6.92 | 40.37 | 4.63 | 16.96 |
4,4,4,1 | 45 | 15 | 3.59 | 25.12 | 3.57 | 13.12 | 2.2 | 11.92 |
4,4,5,1 | 51 | 33 | 4.26 | 33.38 | 4.62 | 23.7 | 3.42 | 13.36 |
4,4,6,1 | 57 | 21 | 3.82 | 34.47 | 3.96 | 25.12 | 3.22 | 11.01 |
4,4,7,1 | 63 | 3 | 3.4 | 31.75 | 5.02 | 25 | 2.48 | 9.71 |
4,4,8,1 | 69 | 31 | 4.64 | 41.64 | 4.65 | 18.91 | 3.04 | 17.44 |
4,4,9,1 | 75 | 48 | 3.62 | 23.49 | 4.12 | 17.49 | 3.09 | 10.51 |
4,4,10,1 | 81 | 28 | 2.87 | 24.72 | 3.44 | 17.71 | 2.49 | 11.79 |
Ionic liquid | Trange (K) | Prange (Mpa) | Model | Comments | Ref. |
---|---|---|---|---|---|
[C6mim][TCM] | 293–363 | Up to 10 | Peng–Robinson EoS with only one temperature-independent binary interaction parameter. | The calculated results are in a good agreement with the experimental data, with an average absolute deviation of less than 2%. | [48] |
[m2HEA][Pr] | 331–363 | 4–16 | Redlich–Kwong/Peng–Robinson EoS coupled to cubic van der Waals mixing rules. | The average error for the mole fraction of methane was around 9.7%. | [49] |
[m-2HEA][Pr] [BHEA][Bu] | 313.1–353.1 | Up to 20 | Redlich–Kwong/Peng–Robinson equation of state (RKPR-EoS). | The model adjustment resulted in average deviations from data below 10% for molar fraction. | [50] |
[C6mim][NO3] | 293.1–342.15 | Up to 4 | Extended Henry’s law model. | Data were correlated with a reasonable accuracy. The average absolute relative deviation in fugacity was 0.257%. | [41] |
[C2mim][dep] [thtdp][phos] [thtdp][dca] [amim][dca] [bmpyrr][dca] [cprop][dca] [cprop][Tf2N] [bmpip][Tf2N] [tes][Tf2N] [toa][Tf2N] | 303.15–363.15 | Up 14 | Peng–Robinson equation of state in combination with van der Waals mixing rules. | They compared the experimental results with those of the model by means of graphical representations. However, they did not present the deviations obtained for these systems. | [40] |
[C2mim][EtSO4 | 293 K | 0.2–10 | Group contribution equation of state. | Average deviation between experimental and calculated equilibrium pressures of 2.3%. | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faúndez, C.A.; Fierro, E.N.; Muñoz, A.S. Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model. Processes 2024, 12, 539. https://doi.org/10.3390/pr12030539
Faúndez CA, Fierro EN, Muñoz AS. Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model. Processes. 2024; 12(3):539. https://doi.org/10.3390/pr12030539
Chicago/Turabian StyleFaúndez, Claudio A., Elías N. Fierro, and Ariana S. Muñoz. 2024. "Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model" Processes 12, no. 3: 539. https://doi.org/10.3390/pr12030539
APA StyleFaúndez, C. A., Fierro, E. N., & Muñoz, A. S. (2024). Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model. Processes, 12(3), 539. https://doi.org/10.3390/pr12030539