A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres
Abstract
:1. Introduction
2. Methodology
3. Raceway Image Segmentation and Feature Extraction
3.1. Image Pre-Processing
3.2. Segmentation of the PC Region
3.3. Pulverized Coal Combustion Model
3.4. Implementation and Training Details of Model
4. Results and Discussions
4.1. Evaluation of the Segmentation of Coal Region Analysis
4.2. Impact of Injection Rate on Coal Cloud Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BF | Blast furnace |
PC | Pulverized coal |
PCI | Pulverized coal injection |
CNN | Convolutional neural network |
GT | Gamma transformation |
ViT | Vision Transformer |
W-MSA | Window-based Multi-head Self-Attention |
SW-MSA | Shifted Window-based Multi-head Self-Attention |
LN | Layer Normalization |
MLP | Multi-Layer Perceptron |
References
- Agrawal, A.; Tiwari, R.K.; Kumar, S.; Chatterjee, R.; Singh, B.K.; Singh, R.S.; Tripathi, V.R.; Kundu, S.; Padmapal; Ramna, R.V.; et al. Technological Advancements in Evaluating the Performance of the Pulverized Coal Injection through Tuyeres in Blast Furnace. Metall. Res. Technol. 2020, 117, 611–633. [Google Scholar] [CrossRef]
- Shen, Y.S.; Yu, A.B.; Austin, P.R.; Zulli, P. CFD Study of In-Furnace Phenomena of Pulverised Coal Injection in Blast Furnace: Effects of Operating Conditions. Powder Technol. 2012, 223, 27–38. [Google Scholar] [CrossRef]
- Zhuo, Y.; Shen, Y. Transient 3D CFD Study of Pulverised Coal Combustion and Coke Combustion in a Blast Furnace: Effect of Blast Conditions. Fuel 2023, 340, 127468. [Google Scholar] [CrossRef]
- Liu, L.; Kuang, S.; Jiao, L.; Guo, B.; Yu, A. Optimization of Pulverized Coal Injection (PCI) Rate in an Ironmaking Blast Furnace by an Integrated Process Model. Fuel 2022, 315, 122832. [Google Scholar] [CrossRef]
- Dianyu, E.; Zhou, P.; Guo, S.; Zeng, J.; Xu, Q.; Guo, L.; Hou, Q.; Yu, A. Particle-Scale Study of Coke Combustion in the Raceway of an Ironmaking Blast Furnace. Fuel 2022, 311, 122490. [Google Scholar] [CrossRef]
- Straka, R.; Bernasowski, M.; Klimczyk, A.; Stachura, R.; Svyetlichnyy, D. Prediction of Raceway Shape in Zinc Blast Furnace under the Different Blast Parameters. Energy 2020, 207, 118153. [Google Scholar] [CrossRef]
- Du, S.W.; Chen, W.H.; Lucas, J.A. Pulverized Coal Burnout in Blast Furnace Simulated by a Drop Tube Furnace. Energy 2010, 35, 576–581. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, K.; Bai, J.; He, D. On-Line Detecting the Tuyere Coke Size and Temperature Distribution of Raceway Zone in a Working Blast Furnace. Fuel 2022, 316, 123349. [Google Scholar] [CrossRef]
- Zhou, D.; Cheng, S. Measurement Study of the PCI Process on the Temperature Distribution in Raceway Zone of Blast Furnace by Using Digital Imaging Techniques. Energy 2019, 174, 814–822. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, S.; Liu, K.; Zhou, D. Measurement Study of Preheated Pulverized Coal Injection on Combustion in a Blast Furnace Raceway by Visual Detection. Fuel 2020, 271, 117626. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, S.; Zhang, R.; Zhou, D.; Chen, T. Reconstruction of Three-Dimensional Temperature Distribution with Radiative Image by Monte Carlo Method in Blast Furnace Raceway. ISIJ Int. 2017, 57, 2141–2147. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, S.; Guo, C. Detection Method for Pulverized Coal Injection and Particles in the Tuyere Raceway Using Image Processing. ISIJ Int. 2018, 58, 244–252. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, J.; Wang, Y. A Visual Detection Method for PCI Blockage and Coke Size Distribution in Tuyere Raceway. Ironmak. Steelmak. 2021, 48, 919–926. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, P.; Yang, G. A Visual PCI Blockage Detection in Blast Furnace Raceway. ISIJ Int. 2020, 60, 519–527. [Google Scholar] [CrossRef]
- Olaf, R.; Philipp, F.; Thomas, B. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 July 2020. [Google Scholar]
- Xiao, H.; Li, L.; Liu, Q.; Zhu, X.; Zhang, Q. Transformers in Medical Image Segmentation: A Review. Biomed. Signal Process. Control 2023, 84, 104791. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2021. [Google Scholar]
- Li, W.; Zhuo, Y.; Bao, J.; Shen, Y. A Data-Based Soft-Sensor Approach to Estimating Raceway Depth in Ironmaking Blast Furnaces. Powder Technol. 2021, 390, 529–538. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, P.; Zhou, C.Q. Evaluation of Pulverized Coal Utilization in a Blast Furnace by Numerical Simulation and Grey Relational Analysis. Appl. Energy 2019, 250, 1686–1695. [Google Scholar] [CrossRef]
- Chourasiya, A.; Khare, N. A Comprehensive Review Of Image Enhancement Techniques. Int. J. Innov. Res. Growth 2019, 8, 60–71. [Google Scholar] [CrossRef]
- Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2018, arXiv:2102.04306. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Working Volume (m3) | 1220 | Coke rate (kg/thm) | 340 |
Number of tuyeres | 21 | PC rate (kg/thm) | 140 |
Blast volume (kNm3/h) | 140 | Hot metal production rate (t/d) | 3600 |
Blast temperature (°C) | 1100 | Hot metal temperature (°C) | 1480 |
Blast oxygen (%) | 28 | Slag ratio (kg/thm) | 200 |
Item | MIoU (%) | PA (%) |
---|---|---|
Unet | 95.6 | 96.0 |
DeeplabV3+ | 93.9 | 94.8 |
Swin–Unet | 97.3 | 98.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Saxén, H.; Mattila, O.; Yu, Y. A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres. Processes 2024, 12, 529. https://doi.org/10.3390/pr12030529
Zhou G, Saxén H, Mattila O, Yu Y. A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres. Processes. 2024; 12(3):529. https://doi.org/10.3390/pr12030529
Chicago/Turabian StyleZhou, Guanwei, Henrik Saxén, Olli Mattila, and Yaowei Yu. 2024. "A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres" Processes 12, no. 3: 529. https://doi.org/10.3390/pr12030529
APA StyleZhou, G., Saxén, H., Mattila, O., & Yu, Y. (2024). A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres. Processes, 12(3), 529. https://doi.org/10.3390/pr12030529