Determining the Role of Water Molecules in Sodalite Formation Using the Vapor Phase Crystallization Method
Abstract
:1. Introduction
2. Material and Experimental Design
2.1. Resources
2.2. Experimental Procedure
2.3. Raw Material and Final Product Characterization
3. Results
3.1. Raw Material and Pre-Fused Products
3.2. VPC Treatment at 45 °C
3.3. VPC Treatment at 60 °C
3.4. VPC Treatment at 90 °C
4. Discussion
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holler, H.; Wirsching, U. Zeolite formation from fly-ash. Fortschr. Mineral. 1985, 63, 21–43. [Google Scholar]
- Mondragon, F.; Rincon, F.; Sierra, L.; Escobar, J.; Ramirez, J.; Fernandez, J. New perspectives for coal ash utilization: Synthesis of zeolitic materials. Fuel 1990, 69, 263–266. [Google Scholar] [CrossRef]
- Shigemoto, N.; Hayashi, H.; Miyaura, K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 1993, 28, 4781–4786. [Google Scholar] [CrossRef]
- Franus, W.; Wdowin, M.; Franus, M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 2014, 186, 5721–5729. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
- Längauer, D.; Čablík, V.; Hredzák, S.; Zubrik, A.; Matik, M.; Danková, Z. Preparation of synthetic zeolites from coal fly ash by hydrothermal synthesis. Materials 2021, 14, 1267. [Google Scholar] [CrossRef] [PubMed]
- Panek, R.; Madej, J.; Bandura, L.; Słowik, G. Recycling of waste solution after hydrothermal conversion of fly ash on a semi-technical scale for zeolite synthesis. Materials 2021, 14, 1413. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, P.; Wang, Y.; Peng, W.; Ren, Z.; Li, Y.; Chu, B.; Zhu, Q. Research progress on synthesis of zeolites from coal fly ash and environmental applications. Front. Environ. Sci. Eng. 2023, 17, 149. [Google Scholar] [CrossRef]
- Iqbal, A.; Sattar, H.; Haider, R.; Munir, S. Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Clean. Prod. 2019, 219, 258–267. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Methods for characterization of composition of fly ashes from coal-fired power stations: A critical overview. Energy Fuels 2005, 19, 1084–1098. [Google Scholar] [CrossRef]
- Yang, L.; Qian, X.; Yuan, P.; Bai, H.; Miki, T.; Men, F.; Li, H.; Nagasaka, T. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 2019, 212, 250–260. [Google Scholar] [CrossRef]
- Guozhi, L.; Zhang, T.; Cheng, C.; Zhang, W.; Wang, L.; Wang, Y.; Zhang, Z. Zeolite a preparation from high alumina fly ash of China using alkali fusion and hydrothermal synthesis method. Mater. Res. Express 2019, 6, 65049. [Google Scholar] [CrossRef]
- Hussain, T.; Hussain, A.I.; Chatha, S.A.S.; Ali, A.; Rizwan, M.; Ali, S.; Ahamd, P.; Wijaya, L.; Alyemeni, M.N. Synthesis and characterization of Na-zeolites from textile waste ash and its application for removal of lead (Pb) from wastewater. Int. J. Environ. Res. Public Health 2021, 18, 3373. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T. Synthesis of zeolite from waste LCD panel glass. Appl. Chem. Eng. 2017, 28, 521–528. [Google Scholar]
- Lin, G.; Zhuang, Q.; Cui, Q.; Wang, H.; Yao, H. Synthesis and adsorption property of zeolite FAU/LTA from lithium slag with utilization of mother liquid. Chin. J. Chem. Eng. 2015, 23, 1768–1773. [Google Scholar] [CrossRef]
- Ng, E.P.; Awala, H.; Tan, K.H.; Adam, F.; Retoux, R.; Mintova, S. EMT-type zeolite nanocrystals synthesized from rice 5husk. Microporous Mesoporous Mater. 2015, 204, 204–209. [Google Scholar] [CrossRef]
- Wajima, T.; Ikegami, Y. Synthesis of zeolitic materials from waste porcelain at low temperature via a two-step alkali conversion. Ceram. Int. 2007, 33, 1269–1274. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Wang, Q.; Ahn, W.S. Co- and Mn-coimpregnated ZSM-5 prepared from recycled industrial solid wastes for low-temperature NH-SCR. Ind. Eng. Chem. Res. 2019, 58, 22857–22865. [Google Scholar] [CrossRef]
- Tehubijuluw, H.; Subagyo, R.; Yulita, M.F.; Nugraha, R.E.; Kusumawati, Y.; Bahruji, H.; Hartati, J.A.A.; Prasetyoko, D. Utilization of red mud waste into mesoporous ZSM-5 for methylene blue adsorption-desorption studies. Environ. Sci. Pollut. Res. 2021, 28, 37354–37370. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-G.; Zhao, Y.; Jow, J.; Gong, B.; Yang, T.-X.; Li, W.; Zhang, Y.; Niu, Y.-C.; Zeng, Y.-P. Study on synthesized zeolite Na with red mud and treatment of the ammonium in wastewater. Bull. Chin. Ceram. Soc. 2018, 37, 3700–3706. [Google Scholar]
- Wu, R.; Xiao, Y.; Zhang, P.; Lin, J.; Cheng, G.; Chen, Z.; Yu, R. Asphalt VOCs reduction of zeolite synthesized from solid wastes of red mud and steel slag. J. Clean. Prod. 2022, 345, 131078. [Google Scholar] [CrossRef]
- Celoria, G.; Begni, F.; Paul, G.; Boccaleri, E.; Merlo, V.; Marchese, L.; Bisio, C. Zeolites Derived from Natural Kaolinite for CO2 Adsorption. Processes 2024, 12, 194. [Google Scholar] [CrossRef]
- Ganbarov, D.; Amirov, S.; Zulfugarov, Z.; Mamedov, K. Synthesis of zeolites from obsidian under hydrothermal conditions. Inorg. Mater. 1977, 13, 282–284. [Google Scholar]
- Youcef, L.D.; López-Galindo, A.; Verdugo-Escamilla, C.; Belaroui, L.S. Synthesis and characterization of zeolite LTA by hydrothermal transformation of a natural Algerian palygorskite. Appl. Clay Sci. 2020, 193, 105690. [Google Scholar] [CrossRef]
- Wu, T.L.; Chen, Y.H.; Hsu, W.D. Phase transition pathway of hydrothermal zeolite synthesis. Phys. Chem. Miner. 2021, 48, 1. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva-Filipova, D.; Popov, C.; Lazarova, H.; Popova, M. Plasma-Modified Coal Fly Ash Zeolites with Enhanced Catalytic Efficiency toward the Total Oxidation of Volatile Organic Compounds as Low-Cost Substitutes for Platinum Group Metals Catalysts. Phys. Status Solidi A-Appl. Res. 2022, 219, 2100632. [Google Scholar] [CrossRef]
- Chang, H.L.; Shih, W.H. Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions. Ind. Eng. Chem. Res. 2000, 39, 4185–4191. [Google Scholar] [CrossRef]
- Tanaka, H.; Matsumura, S.; Hino, R. Formation process of Na-X zeolites from coal fly ash. J. Mater. Sci. 2004, 39, 1677–1682. [Google Scholar] [CrossRef]
- Belviso, C.; Kharchenko, A.; Agostinelli, E.; Cavalcante, F.; Peddis, D.; Varvaro, G.; Yaacoub, N.; Mintova, S. Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous Mesoporous Mater. 2018, 270, 24–29. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, F.; Bi, X.; Chen, D.; Li, J.; Sun, S.; Liu, J.; Chen, X. Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions. J. Hazard. Mater. 2018, 358, 441–449. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, L.; Jiang, Z.; Liu, C.; Zhang, Q.; Zou, Y.; Chen, Y.; Li, J.; Liu, X. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@ NaP1 zeolite as a novel wastewater adsorbent. Chem. Eng. J. 2021, 417, 128090. [Google Scholar] [CrossRef]
- Belviso, C.; Agostinelli, E.; Belviso, S.; Cavalcante, F.; Pascucci, S.; Peddis, D.; Varvaro, G.; Fiore, S. Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud. Microporous Mesoporous Mater. 2015, 202, 208–216. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, J.; Liu, D.; Meng, X.; Guo, Y.; Cheng, F. Feasible synthesis of magnetic zeolite from red mud and coal gangue: Preparation, transformation and application. Powder Technol. 2023, 423, 118495. [Google Scholar] [CrossRef]
- Belviso, C. EMT-type zeolite synthesized from obsidian. Microporous Mesoporous Mater. 2016, 226, 325–330. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Jakevičius, L.; Kantautas, A.; Vaitkevičius, V.; Vaičiukynas, V.; Dvořák, K. Conversion of silica by-product into zeolites by thermo-sonochemical treatment. Ultrason. Sonochem. 2021, 72, 105426. [Google Scholar] [CrossRef]
- Woolard, C.D.; Strong, J.; Erasmus, C.R. Evaluation of the use of modified coal ash as a potential sorbent for organic waste streams. Appl. Geochem. 2002, 17, 1159–1164. [Google Scholar] [CrossRef]
- Askari, S.; Alipour, S.M.; Halladj, R.; Davood Abadi Farahani, M.H. Effects of ultrasound on the synthesis of zeolites: A review. J. Porous Mater. 2013, 20, 285–302. [Google Scholar] [CrossRef]
- Aldahri, T.; Behin, J.; Kazemian, H.; Rohani, S. Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment. Fuel 2016, 182, 494–501. [Google Scholar] [CrossRef]
- Dewes, R.M.; Mendoza, H.R.; Pereira, M.V.L.; Lutz, C.; Van Gerven, T. Experimental and numerical investigation of the effect of ultrasound on the growth kinetics of zeolite A. Ultrason. Sonochem. 2022, 82, 105909. [Google Scholar] [CrossRef] [PubMed]
- Ojumu, T.V.; Du Plessis, P.W.; Petrik, L.F. Synthesis of zeolite A from coal fly ash using ultrasonic treatment—A replacement for fusion step. Ultrason. Sonochem. 2016, 31, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.Y.; Yu, R.; Moskovits, M. Microwave synthesis of zeolites and their related applications. Microporous Mesoporous Mater. 2021, 323, 111262. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Behin, J.; Kazemian, H.; Rohani, S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 2015, 140, 250–266. [Google Scholar] [CrossRef]
- Tauanov, Z.; Azat, S.; Baibatyrova, A. A mini-review on coal fly ash properties, utilization and synthesis of zeolites. Int. J. Coal Prep. Util. 2022, 42, 1968–1990. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; López-Soler, A.; Plana, F. A fast method for recycling fly ash: Microwave-assisted zeolite synthesis. Environ. Sci. Technol. 1997, 31, 2527–2533. [Google Scholar] [CrossRef]
- Makgabutlane, B.; Nthunya, L.N.; Nxumalo, E.N.; Musyoka, N.M.; Mhlanga, S.D. Microwave irradiation-assisted synthesis of zeolites from coal fly ash: An optimization study for a sustainable and efficient production process. ACS Omega 2020, 5, 25000–25008. [Google Scholar] [CrossRef]
- Al-dahri, T.; AbdulRazak, A.A.; Rohani, S. Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: Its application as adsorbent for removal of anionic dyes. Int. J. Coal Prep. Util. 2022, 42, 2064–2077. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, T.; Chen, X.; Li, H.; Xu, X.; Dou, J.; Yu, J. Synthesis of a Coal Fly Ash-Based NaP Zeolite Using the Microwave-Ultrasonic Assisted Method: Preparation, Growth Mechanism, and Kinetics. Chem. Sel. 2023, 8, 202204353. [Google Scholar] [CrossRef]
- Wang, H.; Chang, Q.; Zhou, F.; Liu, Y.; Zeng, L.; Yan, C. Synthesis and characterization of a single phase zeolite X from high silicon fly ash. Sci. Adv. Mater. 2019, 11, 60–67. [Google Scholar] [CrossRef]
- Agrawal, S.; Dhawan, N. Investigation of mechanical and thermal activation on metal extraction from red mud. Sustain. Mater. Technol. 2021, 27, e00246. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Shen, Y.; Li, W.; Zhao, S.; Zhao, Q.; Zhang, Y. A Study on the Removal Characteristics and Mechanism of Phosphorus from Simulated Wastewater Using a Novel Modified Red-Mud-Based Adsorption Material. Separations 2023, 10, 562. [Google Scholar] [CrossRef]
- Belviso, C.; Lettino, A.; Cavalcante, F. Zeolite Synthesis and Steam: Preliminary data Using coal fly ash as raw Material. J. Clust. Sci. 2023, 34, 3041–3046. [Google Scholar] [CrossRef]
- Belviso, C.; Mancinelli, M.; Lettino, A. A green process for zeolite synthesis: Low-temperature vapor phase treatment of natural bauxites. J. Mater. Sci. 2022, 57, 16619–16631. [Google Scholar] [CrossRef]
- Xu, W.; Dong, J.; Li, J.; Li, J.; Wu, F. A novel method for the preparation of zeolite ZSM-5Chem. Soc. Chem. Commun. 1990, 10, 755–756. [Google Scholar] [CrossRef]
- Wang, S.; Jin, H.; Deng, Y.; Xiao, Y. Comprehensive utilization status of red mud in China: A critical review. J. Clean. Prod. 2021, 289, 125136. [Google Scholar] [CrossRef]
- Mamedova, G.A. Synthesis of Zeolite with a Gmelinite Structure in the Dolomite-Halloysite-Obsidian System. Glass Phys. Chem. 2016, 42, 518–521. [Google Scholar] [CrossRef]
- Belviso, C.; Lucini, P.; Mancinelli, M.; Abdolrahimi, M.; Martucci, A.; Peddis, D.; Maraschi, F.; Cavalcante, F.; Sturini, M. Lead, zinc, nickel and chromium ions removal from polluted waters using zeolite formed from bauxite, obsidian and their combination with red mud: Behaviour and mechanisms. J. Clean. Prod. 2023, 415, 137814. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 2005, 82, 1–78. [Google Scholar] [CrossRef]
- Krznaric, I.; Antonic, T.; Bronic, J.; Subotic, B.; Thompson, R.W. Influence of Silica Sources on the Chemical Composition of Aluminosilicate Hydrogels and the Results of Their Hydrothermal Treatment. Croat. Chem. Acta 2003, 76, 7–17. [Google Scholar]
- Inada, M.; Eguchi, Y.; Enomoto, N.; Hojo, J. Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel 2005, 84, 299–304. [Google Scholar] [CrossRef]
- Tang, L.-J.; Xie, X.-Z.; Huang, Y.-X.; Pan, Y.; Mi, J.-X. Phase diagram for hydrothermal alkali activation of kaolin and quartz: Optimal digestion for the synthesis of zeolites. Mater. Chem. Phys. 2022, 290, 126570. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Huertas, F.J.; Lettino, A.; Ragone, P.; Fiore, S. The crystallisation of zeolite (X- and A-type) from fly ash at 25 °C in artificial sea water. Microporous Mesoporous Mater. 2012, 162, 115–121. [Google Scholar] [CrossRef]
- Dimitrov, L.; Valtechev, V.; Nihtianova, D.; Kalvachev, Y. Submicrometer zeoite A crystals formation: Low-temperature crystallization versus vapor phase gel transformation. Cryst. Growth Des. 2011, 11, 4958–4962. [Google Scholar] [CrossRef]
- Thoma, S.G.; Neno, T.M. Vapor phase transport synthesis of zeolites from sol-gel precursors. Microporous Mesoporous Mater. 2000, 41, 295–305. [Google Scholar] [CrossRef]
- Barnes, M.C.; Addai-Mensah, J.; Gerson, A.R. The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor. Microporous Mesoporous Mater. 1999, 31, 287–302. [Google Scholar] [CrossRef]
- Eugster, H.P. Origin and deposition of trona. Rocky Mt. Geol. 1971, 10, 49–55. [Google Scholar]
- Eugster, H.P. Sodium carbonate-bicarbonate minerals as indicators of PCO2. J. Geophys. Res. 1966, 71, 3369–3377. [Google Scholar] [CrossRef]
- Liu, X.; Fleet, M.E. Phase relations of nahcolite and trona at high P-T conditions. J. Mineral. Petrol. Sci. 2009, 104, 25–36. [Google Scholar] [CrossRef]
- Belviso, C.; Perchiazzi, N.; Cavalcante, F. Zeolite from fly ash: An investigation on metastable behavior of the newly formed minerals in a medium-high-temperature range. Ind. Eng. Chem. Res. 2019, 58, 20472–20480. [Google Scholar] [CrossRef]
Element | FA | OS | RM |
---|---|---|---|
Na2O | 0.54 | 4.31 | 4.03 |
MgO | 1.43 | 0.15 | 0.21 |
Al2O3 | 28.21 | 13.20 | 11.46 |
SiO2 | 46.8 | 74.20 | 7.89 |
P2O5 | 0.78 | 0.02 | 0.09 |
K2O | 1.26 | 4.94 | 0.45 |
CaO | 5.57 | 0.96 | 3.53 |
TiO2 | 1.49 | 0.09 | 4.82 |
MnO | 0.06 | 0.08 | 0.21 |
Fe2O3 | 5.23 | 1.76 | 36.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belviso, C. Determining the Role of Water Molecules in Sodalite Formation Using the Vapor Phase Crystallization Method. Processes 2024, 12, 486. https://doi.org/10.3390/pr12030486
Belviso C. Determining the Role of Water Molecules in Sodalite Formation Using the Vapor Phase Crystallization Method. Processes. 2024; 12(3):486. https://doi.org/10.3390/pr12030486
Chicago/Turabian StyleBelviso, Claudia. 2024. "Determining the Role of Water Molecules in Sodalite Formation Using the Vapor Phase Crystallization Method" Processes 12, no. 3: 486. https://doi.org/10.3390/pr12030486
APA StyleBelviso, C. (2024). Determining the Role of Water Molecules in Sodalite Formation Using the Vapor Phase Crystallization Method. Processes, 12(3), 486. https://doi.org/10.3390/pr12030486