Effects of Surface Treatment on Adhesive Performance of Composite-to-Composite and Composite-to-Metal Joints
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Methods
2.2.1. Surface Preparation
2.2.2. Composite Panel Fabrication Process
2.2.3. Aluminum Surface Cleaning and Coating Process
2.2.4. Plasma Treatment
2.2.5. Sandpaper Abrasion
2.2.6. Alodine® Coating on Aluminum Surface
2.2.7. UV Treatment
2.2.8. Water Contact Angle Measurements
2.2.9. Adhesive Bonding Processes
2.2.10. Mechanical Testing
3. Results and Discussion
3.1. Water Contact Angle Analysis
3.2. Effects of Surface Treatment on Adhesive Joint Strength
3.2.1. Composite-to-Composite Adhesive Joint Strength Analysis
3.2.2. Composite-To-Aluminum Joint Strength Analysis
3.3. Failure Modes Analysis and Comparisons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, G.; Yang, T.; Yuan, W.; Du, Y. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Compos. Part B Eng. 2019, 1604, 46–56. [Google Scholar] [CrossRef]
- Uddin, M.N.; Gandy, H.T.N.; Rahman, M.M.; Asmatulu, R. Adhesiveless Honeycomb Sandwich Structures of Pre-Preg Carbon Fiber Composites for Primary Structural Applications. Adv. Compos. Hybrid Mater. 2019, 2, 339–350. [Google Scholar] [CrossRef]
- Uddin, M.N.; Le, L.; Zhang, B.; Nair, R.; Asmatulu, R. Effects of Graphene Thin Films and Nanocomposite Coatings on Fire Retardancy and Thermal Stability of Aircraft Composites: A Comparative Study. J. Eng. Mater. Technol. 2019, 141, 031004. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Wang, J.; Chao, Y.; Zhang, W. The cutting process and damage mechanism of large thickness CFRP based on water jet guided laser processing. Opt. Laser Technol. 2021, 141, 107140. [Google Scholar] [CrossRef]
- Kumar, S.S.A.; Uddin, M.N.; Rahman, M.M.; Asmatulu, R. Introducing Graphene Thin Films into Carbon Fiber Composite Structures for Lightning Strike Protection. Polym. Compos. 2018, 40, E517–E525. [Google Scholar] [CrossRef]
- Ranjan, P.; Pandey, A.K. Modeling of pinning phenomenon in Iwan model for bolted joint. Tribol. Int. 2021, 161, 107071. [Google Scholar] [CrossRef]
- Hosseinabadi, O.F.; Khedmati, M.R. A review on ultimate strength of aluminium structural elements and systems for marine applications. Ocean Eng. 2021, 232, 109153. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, L.; Dong, D.; Li, G.; Cui, J. Microstructure and mechanical property evolution of CFRP/Al electromagnetic riveted lap joint in a severe condition. Eng. Struct. 2019, 1801, 81–91. [Google Scholar] [CrossRef]
- Yudhanto, A.; Alfano, M.; Lubineau, G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106443. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Ni, Z.; Guan, Q.; Blackman, B.R.K.; Saiz, E. Stimuli-responsive surfaces for switchable wettability and adhesion. J. R. Soc. Interface 2021, 18, 20210162. [Google Scholar] [CrossRef]
- Wahab, M.M.A. Fatigue in Adhesively Bonded Joints: A Review. Int. Sch. Res. Not. 2012, 2012, 746308. [Google Scholar] [CrossRef]
- Barbosa, N.G.C.; Campilho, R.D.S.G.; Silva, F.J.G.; Moreira, R.D.F. Comparison of different adhesively-bonded joint types for mechanical structures. Appl. Adhes. Sci. 2018, 6, 15. [Google Scholar] [CrossRef]
- Sun, C.; Min, J.; Lin, J. Effect of Atmospheric Pressure Plasma Treatment on Adhesive Bonding of Carbon Fiber Reinforced Polymer. Polymers 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Kraus, E.; Baudrit, B.; Heidemeyer, P.; Bastian, M.; Stoyanov, O.; Starostina, I. Surface Treatment with Ultraviolet Laser for Adhesive Bonding of Polymeric Materials. J. Adhes. 2017, 93, 204–215. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Ureña, A. Effect of surface pre-treatment on the adhesive strength of epoxy—Aluminium joints. Int. J. Adhes. Adhes. 2009, 29, 23–31. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. High performance epoxy nanocomposite adhesive: Effect of nanofillers on adhesive strength, curing and degradation kinetics. Int. J. Adhes. Adhes. 2018, 84, 238–249. [Google Scholar] [CrossRef]
- Hasirci, N.; Endogan, T.; Vardar, E.; Kiziltay, A.; Hasirci, V. Effect of oxygen plasma on surface properties and biocompatibility of PLGA films. Surf. Interface Anal. 2010, 42, 486–491. [Google Scholar] [CrossRef]
- Williams, T.S.; Yu, H.; Hicks, R.F. Atmospheric Pressure Plasma Activation of Polymers and Composites for Adhesive Bonding. Rev. Adhes. Adhes. 2013, 1, 46–87. [Google Scholar] [CrossRef]
- Stuparu, F.A.; Apostol, D. Failure analysis of dissimilar single-lap joints. Frat. Ed Integrità Strutt. 2016, 36, 69–77. [Google Scholar] [CrossRef]
- Cytec Engineered Materials. CYCOM® 970/PWC T300 3K UT Carbon Fiber Prepreg Technical Datasheet. Available online: https://www.heatcon.com/wp-content/uploads/2015/08/HCS2402-040-Cytec-Carbon-Fiber-Prepreg-Cycom-970PWC-T300-3K-UT.pdf (accessed on 15 March 2022).
- Martinez-Landeros, V.H.; Vargas-Islas, S.Y.; Cruz-Gonzalez, C.E.; Barrera, S.; Mourtazov, K.; Ramirez-Bon, R. Studies on the influence of surface treatment type, in the effectiveness of structural adhesive bonding, for carbon fiber reinforced composites. J. Manuf. Process. 2019, 391, 60–66. [Google Scholar] [CrossRef]
- Gally, C.; García-Gabald’on, M.; Ortega, E.M.; Bernardes, A.M.; P’erez-Herranz, V. Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values. Sep. Purif. Technol. 2020, 238, 116421. [Google Scholar] [CrossRef]
- Biederman, H.; Biederman, J. Plasma Treatment of Polymers for Adhesion and Coating Applications. Plasma Chem. Plasma Process. 2002, 22, 1–7. [Google Scholar]
- Thanu, D.P.R. Fundamentals and applications of plasma cleaning. In Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, pp. 289–353. [Google Scholar] [CrossRef]
- Park, S.-M.; Roy, R.; Kweon, J.-H.; Nam, Y. Strength and failure modes of surface treated CFRP secondary bonded single-lap joints in static and fatigue tensile loading regimes. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105897. [Google Scholar] [CrossRef]
- Akman, E.; Erdoğan, Y.; Bora, M.Ö.; Çoban, O.; Oztoprak, B.G.; Demir, A. Investigation of the differences between photochemical and photothermal laser ablation on the shear strength of CFRP/CFRP adhesive joints. Int. J. Adhes. Adhes. 2020, 98, 102548. [Google Scholar] [CrossRef]
- Uddin, M.N.; Sharmin, N. Mechanical Properties of Similar and Dissimilar Weld-bonded Materials. In Proceedings of the International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh, 26–27 December 2016. [Google Scholar]
- Uddin, M.N.; George, J.M.; Patlolla, V.R.; Asmatulu, R. Investigating the Effects of UV Light and Moisture Absorption on the Low Impact Resistance of Three Different Carbon Fiber-Reinforced Composites. Adv. Compos. Hybrid Mater. 2019, 2, 701–710. [Google Scholar] [CrossRef]
- Li, Y.; Meng, S.; Gong, Q.; Huang, Y.; Gan, J.; Zhao, M.; Liu, B.; Liu, L.; Zou, G.; Zhuang, D. Experimental and Theoretical Investigation of Laser Pretreatment on Strengthening the Heterojunction Between Carbon Fiber Reinforced Plastic and Aluminum Alloy. ACS Appl. Mater. Interfaces 2019, 11, 22005–22014. [Google Scholar] [CrossRef]
- Sun, F.; Pruncu, C.I.; Penchev, P.; Jiang, J.; Dimov, S.; Blackman, B.R.K. Influence of surface micropatterns on the mode I fracture toughness of adhesively bonded joints. Int. J. Adhes. Adhes. 2020, 103, 102718. [Google Scholar] [CrossRef]
- Mandolfino, C.; Cassettari, L.; Pizzorni, M.; Saccaro, S.; Lertora, E. A design-of-experiments approach to estimate the effect of plasma-treatment parameters on the mechanical resistance of adhesive-bonded joints. J. Manuf. Process. 2021, 671, 77–94. [Google Scholar] [CrossRef]
- Liu, X.D.; Wu, L.; Kong, L.; Wang, M.; Chen, Y.D. Effect of Surface and Ahesive-Bonded Properties of Carbon Fibre Reinforced Plastic/Polymer and Atmosphere Plasma Processing. J. Shanghai Jiao Tong Univ. 2019, 53, 971–977. [Google Scholar]
- Luo, H.; Yan, Y.; Zhang, T.; Liang, Z. Progressive failure and experimental study of adhesively bonded composite single-lap joints subjected to axial tensile loads. J. Adhes. Sci. Technol. 2016, 30, 894–914. [Google Scholar] [CrossRef]
- Ghanbari, E.; Sayman, O.; Pekbey, Y.; Ozdemir, O. Experimental analysis of single-lap composite joints with two different adhesives at various conditions. J. Compos. Mater. 2016, 50, 1709–1715. [Google Scholar] [CrossRef]
- Budzik, M.K.; Wolfahrt, M.; Reis, P.; Kozłowski, M.; Sena-Cruz, J.; Papadakis, L.; Vassilopoulos, A.P. Testing mechanical performance of adhesively bonded composite joints in engineering applications: An overview. J. Adhes. 2021, 98, 2133–2209. [Google Scholar] [CrossRef]
- Yoozbashizadeh, M.; Chartosias, M.; Victorino, C.; Decker, D. Investigation on the effect of process parameters in atmospheric pressure plasma treatment on carbon fiber reinforced polymer surfaces for bonding. Mater. Manuf. Process. 2019, 34, 660–669. [Google Scholar] [CrossRef]
- Pizzorni, M.; Parmiggiani, A.; Prato, M. Adhesive bonding of a mixed short and continuous carbon-fiber-reinforced Nylon-6 composite made via fused filament fabrication. Int. J. Adhes. Adhes. 2021, 107, 102856. [Google Scholar] [CrossRef]
- Kwon, H.; Perez, C.; Kim, H.K.; Asheghi, M.; Park, W.; Goodson, K.E. Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2021, 13, 21905–21913. [Google Scholar] [CrossRef]
- Madeira, D.M.F.; Vieira, O.; Pinheiro, L.A.; de Melo Carvalho, B. Correlation between Surface Energy and Adhesion Force of Polyethylene/Paperboard: A Predictive Tool for Quality Control in Laminated Packaging. Int. J. Chem. Eng. 2018, 2018, 2709037. [Google Scholar] [CrossRef]
- Uddin, M.N.; Dhanasekaran, P.S.; Asmatulu, R. Mechanical Properties of Highly Porous PEEK Bio-Nanocomposites Incorporated with Carbon and Hydroxyapatite Nanoparticles for Scaffold Applications. Prog. Biomater. 2019, 8, 211–221. [Google Scholar] [CrossRef]
- Chillakuru, T.R.; Khan, W.S.; Uddin, M.N.; Alarifi, I.M.; Asmatulu, R. Study on Epoxy Nanocomposites Viscoelastic Properties through Dynamic Shear Rheological Analysis Method. Acad. J. Polym. Sci. 2021, 5, 555657. [Google Scholar]
- Kim, T.-H.; Kweon, J.-H.; Choi, J.-H. An Experimental Study on the Effect of Overlap Length on the Failure of Composite-to-Aluminum Single-Lap Bonded Joints. J. Reinf. Plast. Compos. 2008, 27, 1071–1081. [Google Scholar] [CrossRef]
- Blass, D.; Nyga, S.; Jungbluth, B.; Hoffmann, H.-D.; Dilger, K. Composite Bonding Pre-Treatment with Laser Radiation of 3 µm Wavelength: Comparison with Conventional Laser Sources. Materials 2018, 11, 1216. [Google Scholar] [CrossRef]
- Kadiyala, A.K.; Bijwe, J. Investigations on performance and failure mechanisms of high temperature thermoplastic polymers as adhesives. Int. J. Adhes. Adhes. 2016, 70, 90–101. [Google Scholar] [CrossRef]
- Kanerva, M.; Saarela, O. The peel ply surface treatment for adhesive bonding of composites: A review. Int. J. Adhes. Adhes. 2013, 33, 60–69. [Google Scholar] [CrossRef]
- Khan, M.A.; Halil, A.M.; Abidin, M.S.Z.; Hassan, M.H.; Rahman, A.A.A. Influence of laser surface texturing on the surface morphology and wettability of metals and non-metals: A review. Mater. Today Chem. 2024, 41, 102316. [Google Scholar] [CrossRef]
- Xu, Z.; Yip, W.; Dong, Z.; Uddin, M.; Stevens, G. On the laser surface pre-treatment to enhance the surface texture, wettability and adhesion bonding strength of aluminium 7075-T6 laminates. Compos. Interfaces 2023, 31, 123–141. [Google Scholar] [CrossRef]
- Tsai, D.C.; Chang, Z.C.; Chen, E.C.; Huang, Y.L.; Jiang, Y.C.; Shieu, F.S. Influence of Plasma Treatment on Surface Characteristics of Aluminum Alloy Sheets and Bonding Performance of Glass Fiber-Reinforced Thermoplastic/Al Composites. Materials 2023, 16, 3317. [Google Scholar] [CrossRef]
- Qiao, Y.; Shin, Y.; Pallaka, M.R.; Nickerson, E.K.; Merkel, D.R.; Seffens, R.J.; Ortiz, A.; Ramos, J.L.; Simmons, K.L. Plasma surface modification coupled with thermal and step-over distance effects on significant fracture improvement of adhesively-bonded metal-CFRTP dissimilar materials. Compos. Sci. Technol. 2023, 232, 109833. [Google Scholar] [CrossRef]
Adherent 1 | Adherent 2 | Surface Preparation on Adherent 1 | Surface Preparation on Adherent 2 |
---|---|---|---|
Composite | Composite | CT | CT |
ST+CT | ST+CT | ||
CT+PT (4 min) | CT+PT (4 min) | ||
CT+PT (8 min) | CT+PT (8 min) | ||
CT+PT (12 min) | CT+PT (12 min) | ||
ST+CT+PT (4 min) | ST+CT+PT (4 min) | ||
Composite | Aluminum | CT | CT |
CT | ST+CT | ||
CT | Coat | ||
CT | ST+CT+PT (4 min) | ||
CT | ST+CT+PT (8 min) | ||
CT | ST+CT+UV (4 days) | ||
CT | ST+CT+UV (8 days) |
Composite Surface Preparation | Metal Surface | Adhesive | Joint Strength (MPa) | Reference |
---|---|---|---|---|
Sanded with P320 Grit | Not Applicable | Epoxy | 23.6 | [42] |
CFRP Selective Laser Irradiation | Not Applicable | Epoxy | 32 | [43] |
Composite-to- Composite Atmospheric Pressure Plasma Treatment | Not Applicable | Epoxy | 31.6 | [13] |
Not Applicable | Cold Rolled Steel Cleaned with Acetone | Poly (ether sulphone), Poly (ether ketone), Poly (ether-ether ketone) | 8.1 | [44] |
CFRP-CFRP Sanding and Plasma Treatment | Not Applicable | Epoxy | 25.3 | Present Study |
CFRP Sanded with P400 Grit | Aluminum Sanded, Cleaned, UV Treatment for 8 Days | Epoxy | 23.9 | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paranjpe, N.; Uddin, M.N.; Rahman, A.S.; Asmatulu, R. Effects of Surface Treatment on Adhesive Performance of Composite-to-Composite and Composite-to-Metal Joints. Processes 2024, 12, 2623. https://doi.org/10.3390/pr12122623
Paranjpe N, Uddin MN, Rahman AS, Asmatulu R. Effects of Surface Treatment on Adhesive Performance of Composite-to-Composite and Composite-to-Metal Joints. Processes. 2024; 12(12):2623. https://doi.org/10.3390/pr12122623
Chicago/Turabian StyleParanjpe, Nikhil, Md. Nizam Uddin, Akm Samsur Rahman, and Ramazan Asmatulu. 2024. "Effects of Surface Treatment on Adhesive Performance of Composite-to-Composite and Composite-to-Metal Joints" Processes 12, no. 12: 2623. https://doi.org/10.3390/pr12122623
APA StyleParanjpe, N., Uddin, M. N., Rahman, A. S., & Asmatulu, R. (2024). Effects of Surface Treatment on Adhesive Performance of Composite-to-Composite and Composite-to-Metal Joints. Processes, 12(12), 2623. https://doi.org/10.3390/pr12122623