The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite
Abstract
1. Introduction
2. Materials and Reagents
Sorbent Synthesis
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, D.; Zhang, Q.; Zheng, Y.; Caldeira, K.; Shearer, C.; Hong, C.; Qin, Y.; Davis, S.J. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 2019, 572, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, N.; Bahadori, M.; Marandi, A.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I. Enhancement of CO2 adsorption on natural zeolite, modified clinoptilolite with cations, amines and ionic liquids. Sustain. Chem. Pharm. 2021, 22, 100495. [Google Scholar] [CrossRef]
- Gür, T.M. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Elena, T.C.; Skinner, J.; David, G.T. CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods. J. Chem. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorp-tion: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Gunawardene, O.H.P.; Gunathilake, C.A.; Kumar, V.; Amaraweera, S.M. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. J. Atmos. 2022, 13, 397. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Modekwe, H.U.; Onisuru, O.R.; Ohoro, C.R.; Akinnawo, C.A.; Olubambi, P.A. Adsorbent technologies and applications for carbon capture, and direct air capture in environmental perspective and sustainable climate action. Sustain. Chem. Clim. Action. 2023, 3, 100029. [Google Scholar] [CrossRef]
- Davarpanah, E.; Armandi, M.; Hernández, S.; Fino, D.; Arletti, R.; Bensaid, S.; Piumetti, M. CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites. J. Environ. Manag. 2020, 275, 111229. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Biblioteca, I.; Sambucci, M.; Valente, M. Zeolite-Clinoptilolite conditioning for improved heavy metals ions removal: A preliminary assessment. Ceram. Int. 2023, 49, 39649–39656. [Google Scholar] [CrossRef]
- Sharma, P.; Sutar, P.P.; Xiao, H.; Zhang, Q. The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: A review. J. Future Foods 2023, 3, 127–141. [Google Scholar] [CrossRef]
- El Bojaddayni, I.; Emin Küçük, M.; El Ouardi, Y.; Jilal, I.; El Barkany, S.; Moradi, K.; Repo, E.; Laatikainen, K.; Ouammou, A. A review on synthesis of zeolites from natural clay resources and waste ash: Recent approaches and progress. Miner. Eng. 2023, 198, 108086. [Google Scholar] [CrossRef]
- El-Arish, N.A.S.; Zaki, R.S.R.M.; Miskan, S.N.; Setiabudi, H.D.; Jaafar, N.F. Adsorption of Pb (II) from aqueous solution using alkaline-treated natural zeolite: Process optimization analysis. Total Environ. Res. Themes 2022, 3–4, 100015. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. [Google Scholar] [CrossRef]
- Abdulina, S.A.; Sadenova, M.A.; Sapargaliev, E.M.; Utegenova, M.E. Peculiarities of zeolite mineral composition of Taizhuzgen deposit. Vestnik KazNTU. 2014, 103, 24–31. (In Russian) [Google Scholar]
- Mambetova, M.; Dossumov, K.; Baikhamurova, M.; Yergaziyeva, G. Sorbents Based on Natural Zeolites for Carbon Dioxide Capture and Removal of Heavy Metals from Wastewater: Current Progress and Future Opportunities. Processes 2024, 12, 2071. [Google Scholar] [CrossRef]
- Rakhym, A.B.; Seilkhanova, G.A.; Kurmanbayeva, T.S. Adsorption of Lead (II) Ions from Water Solutions with Natural Zeolite and Chamotte Clay. Mater. Today Proc. 2020, 31, 482–485. [Google Scholar] [CrossRef]
- Vasilyanova, L.S.; Lazareva, E.A. Zeolites in Ecology. News of Science of Kazakhstan. 2016, pp. 61–85. Available online: https://nv.nauka.kz/wp-content/uploads/2016/04/nnk-2016-1.pdf (accessed on 13 September 2024). (In Russian).
- Telkhozhayeva, M.; Seilkhanova, G.; Rakhym, A.; Imangaliyeva, A.B.; Akbayeva, D.N. Sorption of lead and cadmium ions from aqueous solutions using modified zeolite. Chem. Bull. Kazakh. Natl. Univ. 2018, 91, 16–22. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water. 2023, 15, 2215. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, C.; Wang, P.; Sun, J.; Li, W.; Zhao, C.; Lu, P. Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods. Chem. Eng. J. 2020, 379, 122277. [Google Scholar] [CrossRef]
- Mambetova, M.; Yergaziyeva, G.; Zhoketayeva, A. Physicochemical characteristics and carbon dioxide sorption properties of natural zeolites. Combust. Plasma Chem. 2023, 21, 81–87. [Google Scholar] [CrossRef]
- Nikashina, V.A.; Streletskii, A.N.; Kolbanev, I.V.; Meshkova, I.N.; Grinev, V.G.; Serova, I.B.; Yusupov, T.S.; Shumskaya, L.G. Effect of mechanical activation on the properties of natural zeolites. Inorg. Mater. 2011, 47, 1341–1346. [Google Scholar] [CrossRef]
- Beycioglu, A.; Aruntaş, H.Y.; Gencel, O.; Hagg Lobland, H.E.; Şamandar, A.; Brostow, W. Effect of Elevated Temperatures on Properties of Blended Cements with Clinoptilolite. Mater. Sci. 2016, 22, 548–552. [Google Scholar] [CrossRef]
- Güngör, D.; Özen, S. Development and Characterization of Clinoptilolite-, Mordenite-, and Analcime-Based Geopolymers: A Comparative Study. Case Stud. Constr. Mater. 2021, 15, e00576. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Hernandez, G.I.; Portillo, R.; Rubio, E.; Petranovskii, V.; Alvarez, K.M.; Velasco, M.D.L.A.; Santamaría, J.D.; Tornero, M.; Paniagua, L.A. CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations 2023, 10, 238. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Huang, E.; Li, Y.H.; Hung, H.T.; Jiang, J.H.; Liu, T.C.; Fang, J.N.; Chen, H.F. Raman Spectroscopic Characteristics of Zeolite Group Minerals. Minerals 2021, 11, 167. [Google Scholar] [CrossRef]
- Dabizha, O.N.; Derbenova, T.V.; Khamova, T.V.; Shilova, O.A. Controlling the Sorption Activity of Clinoptilolites with Mechanical Activation. Inorg. Mater. 2021, 57, 399–408. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.; Yang, K. Effects of Mechanical Activation on Physical and Chemical Characteristics of Coal-Gasification Slag. Coatings 2021, 11, 902. [Google Scholar] [CrossRef]
- Zheng, S.; Heydenrych, H.R.; Jentys, A.; Lercher, J.A. Influence of Surface Modification on the Acid Site Distribution of HZSM-5. J. Phys. Chem. B. 2002, 106, 9552–9558. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, R.; Webley, P.A. Alkali and Alkaline-Earth Cation Exchanged Chabazite Zeolites for Adsorption Based CO2 Capture. Microporous Mesoporous Mater. 2008, 111, 478–487. [Google Scholar] [CrossRef]
- Pang, H.; Sun, A.; Xu, H.; Xiao, G. Regenerable MgO-Based Sorbents for CO2 Capture at Elevated Temperature and Pressure: Experimental and DFT Study. Chem. Eng. J. 2021, 425, 130675. [Google Scholar] [CrossRef]
- Donat, F.; Müller, C.R. Prospects of MgO-Based Sorbents for CO2 Capture Applications at High Temperatures. Curr. Opin. Green Sustain. Chem. 2022, 36, 100645. [Google Scholar] [CrossRef]
- Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO2 Capture and Conversion Using Mg-MOF-74 Prepared by a Sonochemical Method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Xiao, G.; Singh, R.; Chaffee, A.; Webley, P. Advanced Adsorbents Based on MgO and K2CO3 for Capture of CO2 at Elevated Temperatures. Int. J. Greenh. Gas Control 2011, 5, 634–639. [Google Scholar] [CrossRef]
- Elvira, G.B.; Francisco, G.C.; Víctor, S.M.; Alberto, M.L.R. MgO-Based Adsorbents for CO2 Adsorption: Influence of Structural and Textural Properties on the CO2 Adsorption Performance. J. Environ. Sci. 2017, 57, 418–428. [Google Scholar] [CrossRef]
- Alkadhem, A.M.; Elgzoly, M.A.A.; Onaizi, S.A. Novel Amine-Functionalized Magnesium Oxide Adsorbents for CO2 Capture at Ambient Conditions. J. Environ. Chem. Eng. 2020, 8, 103968. [Google Scholar] [CrossRef]
- Ouyang, J.; Gu, W.; Zheng, C.; Yang, H.; Zhang, X.; Jin, Y.; Chen, J.; Jiang, J. Polyethyleneimine (PEI) Loaded MgO-SiO 2 Nanofibers from Sepiolite Minerals for Reusable CO2 Capture/Release Applications. Appl. Clay Sci. 2018, 152, 267–275. [Google Scholar] [CrossRef]
- Vu, A.-T.; Park, Y.; Jeon, P.R.; Lee, C.-H. Mesoporous MgO Sorbent Promoted with KNO3 for CO2 Capture at Intermediate Temperatures. Chem. Eng. J. 2014, 258, 254–264. [Google Scholar] [CrossRef]
- Jin, S.; Ko, K.-J.; Lee, C.-H. Direct Formation of Hierarchically Porous MgO-Based Sorbent Bead for Enhanced CO2 Capture at Intermediate Temperatures. Chem. Eng. J. 2019, 371, 64–77. [Google Scholar] [CrossRef]
- Yang, N.; Ning, P.; Li, K.; Wang, J. MgO-Based Adsorbent Achieved from Magnesite for CO 2 Capture in Simulate Wet Flue Gas. J. Taiwan Inst. Chem. Eng. 2018, 86, 73–80. [Google Scholar] [CrossRef]
- Vu, A.T.; Ho, K.; Jin, S.; Lee, C.H. Double Sodium Salt-Promoted Mesoporous MgO Sorbent with High CO2 Sorption Capacity at Intermediate Temperatures under Dry and Wet Conditions. Chem. Eng. J. 2016, 291, 161–173. [Google Scholar] [CrossRef]
- Ho, K.; Jin, S.; Zhong, M.; Vu, A.T.; Lee, C.H. Sorption Capacity and Stability of Mesoporous Magnesium Oxide in Post-Combustion CO2 Capture. Mater. Chem. Phys. 2017, 198, 154–161. [Google Scholar] [CrossRef]
- Liu, Q.; Pham, T.; Porosoff, M.D.; Lobo, R.F. ZK-5: A CO2 Selective Zeolite with High Working Capacity at Ambient Temperature and Pressure. Chem. Sus. Chem. 2012, 5, 2237–2242. [Google Scholar] [CrossRef]
- Olegario-Sanchez, E.; Felizco, J.C.; Mulimbayan, F. Investigation of the Thermal Behavior of Philippine Natural Zeolites. In Proceedings of the AIP Conference, Langkawi, Malaysia, 4 December 2017; p. 070005. [Google Scholar]
- Joni, I.M.; Nulhakim, L.; Vanitha, M.; Panatarani, C. Characteristics of Crystalline Silica (SiO2) Particles Prepared by Simple Solution Method Using Sodium Silicate (Na2SiO3) Precursor. J. Phys. Conf. Ser. 2018, 1080, 012006. [Google Scholar] [CrossRef]
- Rahmadhani, D.; Yuliani, K.D.; Frida, E.; Taufiq, A. Hydrophobic and Antibacterial Properties of Textiles Using Nanocomposite Chitosan and SiO2 from Rice Husk Ash As-Coating. S. Afr. J. Chem. Eng. 2024, 48, 366–374. [Google Scholar] [CrossRef]
- Guo, X.; Yang, H.; Han, C.; Song, F. Crystallization and Microstructure of Li2O–Al2O3–SiO2 Glass Containing Complex Nucleating Agent. Thermochim. Acta 2006, 444, 201–205. [Google Scholar] [CrossRef]
- Kleebusch, E.; Patzig, C.; Krause, M.; Hu, Y.; Höche, T.; Rüssel, C. The Formation of Nanocrystalline ZrO2 Nuclei in a Li2O-Al2O3-SiO2 Glass—A Combined XANES and TEM. Study Sci. Rep. 2017, 7, 10869. [Google Scholar] [CrossRef]
- Naumov, A.S.; Shakhgildyan, G.Y.; Golubev, N.V.; Lipatiev, A.S.; Fedotov, S.S.; Alekseev, R.O.; Ingat’eva, E.S.; Savinkov, V.I.; Sigaev, V.N. Tuning the Coefficient of Thermal Expansion of Transparent Lithium Aluminosilicate Glass-Ceramics by a Two-Stage Heat Treatment. Ceramics 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High Temperature Capture of CO2 on Lithium-Based Sorbents from Rice Husk Ash. J. Hazard. Mater. 2011, 189, 301–307. [Google Scholar] [CrossRef]
- Sanna, A.; Thompson, S.; Zajac, J.M.; Whitty, K.J. Evaluation of Palm-Oil Fly Ash Derived Lithium Silicate for CO2 Sorption under Simulated Gasification Conditions. J. CO2 Util. 2022, 56, 101826. [Google Scholar] [CrossRef]
- Hernández-Palomares, A.; Alcántar-Vázquez, B.; Ramírez-Zamora, R.M.; Coutino-Gonzalez, E.; Espejel-Ayala, F. CO2 Capture Using Lithium-Based Sorbents Prepared with Construction and Demolition Wastes as Raw Materials. Mater. Today Sustain. 2023, 24, 100491. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; Guo, H.; Zhao, W.; Zheng, F.; Chen, Y.; Yan, B.; Chen, D. Lithium Based High Temperature Sorbent from Copper Slag: Synthesis and CO2 Capture Performance. Ceram. Int. 2023, 49, 37435–37444. [Google Scholar] [CrossRef]
- Chai, Y.E.; Chalouati, S.; Fantucci, H.; Santos, R.M. Accelerated Weathering and Carbonation (Mild to Intensified) of Natural Canadian Silicates (Kimberlite and Wollastonite) for CO2 Sequestration. Crystals 2021, 11, 1584. [Google Scholar] [CrossRef]
- Kalinkin, A.M.; Kalinkina, E.V.; Zalkind, O.A.; Makarov, V.N. CO2 Sorption during Mechanical Activation of Sodium and Calcium Aluminosilicates. Inorg. Mater. 2005, 41, 486–491. [Google Scholar] [CrossRef]
- Paustian, K.; Pacala, S.W.; Al-Kaisi, M.; Barteau, M.A.; Belmont, E.; Benson, S.M.; Birdsey, R.; Boysen, D.; Duren, R.M.; Hopkinson, C.; et al. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; National Academies Press: Washington, DC, USA, 2019; p. 25259. ISBN 978-0-309-48452-7. [Google Scholar]
- Hu, Y.; Liu, X.; Zhou, Z.; Liu, W.; Xu, M. Pelletization of MgO-Based Sorbents for Intermediate Temperature CO2 Capture. Fuel 2017, 187, 328–337. [Google Scholar] [CrossRef]
- Papalas, T.; Polychronidis, I.; Antzaras, A.N.; Lemonidou, A.A. Enhancing the Intermediate-Temperature CO2 Capture Efficiency of Mineral MgO via Molten Alkali Nitrates and CaCO3: Characterization and Sorption Mechanism. J. CO2 Util. 2021, 50, 101605. [Google Scholar] [CrossRef]
- López-Periago, A.M.; Fraile, J.; López-Aranguren, P.; Vega, L.F.; Domingo, C. CO2 Capture Efficiency and Carbonation/Calcination Kinetics of Micro and Nanosized Particles of Supercritically Precipitated Calcium Carbonate. Chem. Eng. J. 2013, 226, 357–366. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, H.; Zhao, G.; Li, L.; Ji, T.; Mu, L.; Lu, X.; Zhu, J. A Thermodynamic View on the In-Situ Carbon Dioxide Reduction by Biomass-Derived Hydrogen during Calcium Carbonate Decomposition. Chin. J. Chem. Eng. 2024, 68, 231–240. [Google Scholar] [CrossRef]
- Litasov, K.D.; Shatskiy, A.F. MgCO3 + SiO2 Reaction at Pressures to 32 GPa Studied Using in Situ X-Ray Diffraction and Synchrotron Radiation. Geochemistry 2019, 64, 1003–1012. [Google Scholar] [CrossRef]
- Kwon, S.H.; Hiremath, V.; Nanoti, A.; Kang, S.G.; Seo, J.G.; Lee, S.G. MgO-Based Composites for High Pressure CO2 Capture: A First-Principles Theoretical and Experimental Investigation. Korean J. Chem. Eng. 2023, 40, 2990–2996. [Google Scholar] [CrossRef]
- Blanco-García, S.; Aguado, F.; González, J.; Rodriguez, F. A Raman Study of the Pressure-Induced Densification of SiO2 -Based Glass-Ceramics. J. Phys. Condens. Matter. 2018, 30, 304002. [Google Scholar] [CrossRef] [PubMed]
- Cormier, L.; Cuello, G.J. Structural Investigation of Glasses along the MgSiO3–CaSiO3 Join: Diffraction Studies. Geochim. Cosmochim. Acta 2013, 122, 498–510. [Google Scholar] [CrossRef]
- Moulton, B.J.A.; Henderson, G.S.; Fukui, H.; Hiraoka, N.; De Ligny, D.; Sonneville, C.; Kanzaki, M. In Situ Structural Changes of Amorphous Diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-Edge X-Ray Raman Spectroscopic Study. Geochim. Cosmochim. Acta 2016, 178, 41–61. [Google Scholar] [CrossRef]
- Morizet, Y.; Trcera, N.; Larre, C.; Rivoal, M.; Le Menn, E.; Vantelon, D.; Gaillard, F. X-Ray Absorption Spectroscopic Investigation of the Ca and Mg Environments in CO2-Bearing Silicate Glasses. Chem. Geol. 2019, 510, 91–102. [Google Scholar] [CrossRef]
- Rabia, M.K.; Degioanni, S.; Martinet, C.; Le Brusq, J.; Champagnon, B.; Vouagner, D. A-Thermal Elastic Behavior of Silicate Glasses. J. Phys. Condens. Matter. 2016, 28, 075402. [Google Scholar] [CrossRef]
- Selvamani, T.; Sinhamahapatra, A.; Bhattacharjya, D.; Mukhopadhyay, I. Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys. 2011, 129, 853–861. [Google Scholar] [CrossRef]
- Thiago Rossi, M.; Campos Juacyara, C.; Souza Mariana, M.V.M. CO2 capture by Mg–Al and Zn–Al hydrotalcite-like compounds. Adsorption 2016, 22, 151–158. [Google Scholar] [CrossRef]
- Kulawong, S.; Youngjan, S.; Khemthong, P.; Chanlek, N.; Wittayakun, J.; Osakoo, N. Magnesium Impregnated on NaX Zeolite Synthesized from Cogon Grass Silica for Fast Production of Fructose via Microwave-Assisted Catalytic Glucose Isomerization. Catalysts 2021, 11, 981. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Pancoko, M.; Butar-Butar, S.L.; Putra, G.E.; Tjahjono, H. Study on the mechanism of CO2 adsorption process on zeolite 5A as a molecular sieve in RDE system: An infrared investigation. J. Phys. Conf. Ser. 2019, 1198, 032009. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Modification and Functionalization of Zeolites to Improve the Efficiency of CO2 Adsorption: A Review. Chem. Environ. Eng. 2024, 9, 100564. [Google Scholar] [CrossRef]
Samples | Abbreviation |
---|---|
Zeolite Shankanay | Sh |
Zeolite Tayzhuzgen | Tg |
Zeolite Tayzhuzgen mechanically activated at 6:1 | Tg 6:1 |
Composition, wt.% | Al2O3 | SiO2 | CaO | ZnO | In2O3 | Fe2O3 | K2O |
---|---|---|---|---|---|---|---|
Tg | 12.9 | 72.2 | 5.6 | 1.2 | 7.7 | 0.4 | - |
Sh | 16.9 | 49.5 | 15.2 | - | - | 14.7 | 3.7 |
Samples | Surface Area, m2/g |
---|---|
Sh | 5.61 |
Tg | 11.12 |
Tg 6:1 | 16.0 |
Composition of Sorbents | Preparation Methods | CO2 Adsorption Temperature/°C | Adsorption Time (min) | Adsorption Capacity (wt. %)/mmol/g | Ref./This Work |
---|---|---|---|---|---|
Mg-MOF-74 | sonochemical method | 25 | - | 35% | [34] |
MgO/K2CO3 | recipitation method | 375 | 120 | 8.7 | [35] |
MgO-BM2.5h | solution–combustion | 25 and 1 atm | 30 | 1.611 mmol/g | [36] |
MgO | sol–gel | 30 | - | 0.68 | [37] |
PEI-MgO | sol–gel and impregnation | 30 | - | 0.54 mmol/g | |
MgO-SiO2 | acid leaching | 75 | - | 0.41 mmol/g | [38] |
MgOꞏKNO3 | aerogel method | 325 | 120 | 13.9% | [39] |
MgO/Tg 6/1 | capillary impregnation | 500 | 30 | 8.46 mmol/g | [This work] |
MgO-CeO2 | sol–gel combustion | 325 | 240 | 45% | [40] |
Calcinated magnesite MgO | - | 60 °C, 0.4 MПa | - | 1.82 mmol/g | [41] |
MgOꞏNa2CO3 | aerogel method | 325 | 240 | 4.3% | [42] |
MgO | aerogel method | 30 | 5 | 10% | [43] |
MgO-SR | solid-state chemical reaction method | 60 | - | 2.39 mmol/g | [22] |
Mg-ZK-5 | ion exchanges | 30, 0.15 bar | - | 1.9 mmol/g | [44] |
Mg-CHA | ion exchanges | −0.15–60 0.15 bar | - | 3.4 mmol/g | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mambetova, M.; Dossumov, K.; Yergaziyeva, G. The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes 2024, 12, 2592. https://doi.org/10.3390/pr12112592
Mambetova M, Dossumov K, Yergaziyeva G. The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes. 2024; 12(11):2592. https://doi.org/10.3390/pr12112592
Chicago/Turabian StyleMambetova, Manshuk, Kusman Dossumov, and Gaukhar Yergaziyeva. 2024. "The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite" Processes 12, no. 11: 2592. https://doi.org/10.3390/pr12112592
APA StyleMambetova, M., Dossumov, K., & Yergaziyeva, G. (2024). The Influence of Mg, Na, and Li Oxides on the CO2 Sorption Properties of Natural Zeolite. Processes, 12(11), 2592. https://doi.org/10.3390/pr12112592