Experimental Investigation of Cr12 Steel Under Electrostatic Minimum Quantity Lubrication During Grinding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbosa, E.L.; Brandão, L.C. The use of alternative coolant techniques to reduce the environmental impact in the use of water in through-feed centreless grinding. Int. J. Adv. Manuf. Technol. 2017, 91, 3417–3425. [Google Scholar] [CrossRef]
- Majumdar, S.; Kumar, S.; Roy, D.; Chakroborty, S.; Das, S. Improvement of lubrication and cooling in grinding. Mater. Manuf. Process. 2017, 33, 1459–1465. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, M.; Dong, G. Experimental investigation on rotary ultrasonic face grinding of Sicp/Al composites. Mater. Manuf. Process. 2016, 31, 673–678. [Google Scholar] [CrossRef]
- Fitseva, V.; Hanke, S.; Dos Santos, J.F. Influence of rotational speed on process characteristics in friction surfacing of Ti-6Al-4V. Mater. Manuf. Process. 2017, 32, 557–563. [Google Scholar] [CrossRef]
- Zou, L.; Huang, Y.; Zhou, M.; Duan, L. Investigation on diamond tool wear in ultrasonic vibration-assisted turning die steels. Mater. Manuf. Process. 2017, 32, 1505–1511. [Google Scholar] [CrossRef]
- Chan, Y.L.; Xu, X. Evaluation and comparison of lubrication methods in finish machining of hardened steel mould inserts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 2458–2467. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Zhang, X.; Hou, Y.; Shen, B.; Li, R. Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes. Mater. Manuf. Process. 2017, 33, 58–68. [Google Scholar] [CrossRef]
- Liu, G.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Zhang, X.; Guo, S.; Li, R.; Zhai, H. Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Mater. Manuf. Process. 2017, 33, 950–963. [Google Scholar] [CrossRef]
- Anand, S.P.; Arunachalam, N.; Vijayaraghavan, L. Study on grinding of pre-sintered zirconia using diamond wheel. Mater. Manuf. Process. 2017, 33, 634–643. [Google Scholar] [CrossRef]
- Zou, L.; Huang, Y.; Zhou, M. Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning 3Cr2NiMo steel. Mater. Manuf. Process. 2017, 33, 943–949. [Google Scholar] [CrossRef]
- Chetan; Ghosh, S.; Rao, P.V. Environment Friendly Machining of Ni–Cr–Co Based Super Alloy Using Different Sustainable Techniques. Mater. Manuf. Process. 2016, 31, 852–859. [Google Scholar] [CrossRef]
- Naveena, B.; Thaslima, S.M.; Savitha, V.; Naveen Krishna, B.; Raj, D.S.; Karunamoorthy, L. Simplified MQL System for Drilling AISI 304 SS Using Cryogenically Treated Drills. Mater. Manuf. Process. 2017, 32, 1679–1684. [Google Scholar] [CrossRef]
- Sinha, M.K.; Madarkar, R.; Ghosh, S.; Rao, P.V. Application of eco-friendly nanofluids during grinding of inconel 718 through small quantity lubrication. J. Clean. Prod. 2017, 141, 1359–1375. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Zhang, Y.; Yang, M.; Li, B.; Jia, D. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (mql) grinding using different types of vegetable oils. J. Clean. Prod. 2016, 127, 487–499. [Google Scholar] [CrossRef]
- Madarkar, R.; Agarwal, S.; Attar, P. Application of ultrasonic vibration assisted MQL in grinding of Ti–6Al–4V. Mater. Manuf. Process. 2017, 33, 1445–1452. [Google Scholar] [CrossRef]
- Dureja, J.S.; Singh, R.; Singh, T. Performance evaluation of coated carbide tool in machining of stainless steel (AISI 202) under minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf.-Green Technol. 2015, 2, 123–129. [Google Scholar] [CrossRef]
- Huang, X.; Ren, Y.; Li, T. Influence of minimum quantity lubrication parameters on grind-hardening process. Mater. Manuf. Process. 2017, 33, 69–76. [Google Scholar] [CrossRef]
- Banerjee, N.; Sharma, A. Development of a friction model and its application in finite element analysis of minimum quantity lubrication machining of Ti-6Al-4V. J. Mater. Process. Technol. 2016, 238, 181–194. [Google Scholar] [CrossRef]
- Rabiei, F.; Rahimi, A.R.; Hadad, M.J.; Ashrafijou, M. Performance improvement of minimum quantity lubrication (mql) technique in surface grinding by modeling and optimization. J. Clean. Prod. 2015, 86, 447–460. [Google Scholar] [CrossRef]
- Stephenson, D.A.; Skerlos, S.J.; King, A.S.; Supekar, S.D. Rough turning inconel 750 with supercritical CO2-based minimum quantity lubrication. J. Mater. Process. Technol. 2014, 214, 673–680. [Google Scholar] [CrossRef]
- Hadad, M.J.; Tawakoli, T.; Sadeghi, M.H.; Sadeghi, B. Temperature and energy partition in minimum quantity lubrication-mql grinding process. Int. J. Mach. Tools Manuf. 2012, 54–55, 10–17. [Google Scholar] [CrossRef]
- Oliveira, D.D.J.; Guermandi, L.G.; Bianchi, E.C.; Diniz, A.E.; Aguiar, P.R.D.; Canarim, R.C. Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J. Mater. Process. Technol. 2012, 212, 2559–2568. [Google Scholar] [CrossRef]
- Sadeghi, M.H.; Haddad, M.J.; Tawakoli, T.; Emami, M. Minimal quantity lubrication-mql in grinding of Ti–6Al–4V titanium alloy. Int. J. Adv. Manuf. Technol. 2009, 44, 487–500. [Google Scholar] [CrossRef]
- Xu, X.; Huang, S.; Wang, M.; Yao, W. A study on process parameters in end milling of AiSi-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 2017, 90, 979–989. [Google Scholar] [CrossRef]
- Yao, K.F.; Wang, J.; Zheng, M.; Yu, P.; Zhang, H. A research on electroplastic effects in wire-drawing process of an austenitic stainless steel. Scr. Mater. 2001, 45, 533–539. [Google Scholar] [CrossRef]
- Zhu, R.; Tang, G. The improved plasticity of niti alloy via electropulsing in rolling. Met. Sci. J. 2016, 33, 546–551. [Google Scholar] [CrossRef]
- Bao, W.; Chu, X.; Lin, S.; Gao, J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater. Des. 2015, 87, 632–639. [Google Scholar] [CrossRef]
- Antolovich, S.D.; Conrad, H. The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: An interpretive survey. Adv. Manuf. Process. 2004, 19, 587–610. [Google Scholar] [CrossRef]
- Ye, D.; Li, S.; Li, J. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel. Mater. Charact. 2015, 109, 100–106. [Google Scholar] [CrossRef]
- Krishna, M.E.; Chee, H.C.; Prasada, R.A.K. Surface hardenability studies of the die steel machined by WEDM. Mater. Manuf. Process. 2018, 33, 1745–1750. [Google Scholar]
- Guan, L.; Tang, G.; Chu, P.K. Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 2010, 25, 1215–1224. [Google Scholar] [CrossRef]
- Kontsevoi, O.Y.; Gornostyrev, Y.N.; Freeman, A.J.; Katsnelson, M.I.; Trefilov, A.V. Electronic mechanism of impurity-dislocation interactions in intermetallics: Nial. Philos. Mag. Lett. 2001, 81, 455–463. [Google Scholar] [CrossRef]
- Wu, Y.X.; Sun, W.W.; Styles, M.J.; Arlazarov, A.; Hutchinson, C.R. Cementite coarsening during the tempering of Fe-C-Mn martensite. Acta Mater. 2018, 159, 209–224. [Google Scholar] [CrossRef]
- Zhou, L.C.; Fang, F.; Wang, L.P.; Hu, X.J.; Xie, Z.H.; Jiang, J.Q. Torsion performance of pearlitic steel wires: Effects of morphology and crystallinity of cementite. Mater. Sci. Eng. A 2019, 743, 425–435. [Google Scholar] [CrossRef]
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T. Improving the Surface Integrity of 316L Steel in the Context of Bioimplant Applications. Materials 2023, 16, 3460. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Ji, H.; Yang, X.; Yang, M.; Jia, D. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int. J. Mach. Tools Manuf. 2017, 122, 81–97. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Z.; Yao, W.; Xu, X. Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribol. Int. 2015, 91, 74–84. [Google Scholar] [CrossRef]
Experimental Contents | Experimental Conditions |
---|---|
Grinding machine | MM7120A type plane grinder |
Grinding wheel | Corundum grinding wheel: grain size. 60#; maximum linear speed. 35 m/s; size: 250 mm × 16 mm × 75 mm |
Grinding parameters | The linear speed of the grinding wheel was 20 m/s; the workpiece speed was 150 mm/s; the grinding depth was 10 μm; and the total grindingdepth was 100 μm |
Workpiece material | Cr12 die steel; workpiece size: 65 mm × 55 mm × 48 mm |
Lubricating fluid | Calteche SYN 40 total synthetic liquid: water = 1:9 (mass ratio) |
Charging voltages | 0 kV. ±1 kV. ±2 kV. ±3 kV. ±4 kV. ±5 kV |
Air pressure | 0.4 MPa |
Flow rate | 50 mL/h |
Dressing condition | Using a single point diamond trimmer; the dressing depth was 100 μm; the dressing speed was 20 m/s |
Absolute Voltage (kV) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|---|
Wetting angle on the Cr12 surface (°) | Positive electricity | 51 | 47 | 45 | 43 | 39 | 38 | 34 | 29 |
Negative electricity | 48 | 46 | 43 | 41 | 39 | 35 | 30 | ||
Surface tension (N·m−1) | Positive electricity | 0.047 | 0.044 | 0.043 | 0.042 | 0.040 | 0.037 | 0.033 | 0.028 |
Negative electricity | 0.045 | 0.044 | 0.042 | 0.041 | 0.038 | 0.033 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, B.; Guo, X.; Guo, P.; Tong, Z.; Xu, X. Experimental Investigation of Cr12 Steel Under Electrostatic Minimum Quantity Lubrication During Grinding. Processes 2024, 12, 2551. https://doi.org/10.3390/pr12112551
Feng B, Guo X, Guo P, Tong Z, Xu X. Experimental Investigation of Cr12 Steel Under Electrostatic Minimum Quantity Lubrication During Grinding. Processes. 2024; 12(11):2551. https://doi.org/10.3390/pr12112551
Chicago/Turabian StyleFeng, Bohua, Xiaomei Guo, Pengcheng Guo, Zeqi Tong, and Xuefeng Xu. 2024. "Experimental Investigation of Cr12 Steel Under Electrostatic Minimum Quantity Lubrication During Grinding" Processes 12, no. 11: 2551. https://doi.org/10.3390/pr12112551
APA StyleFeng, B., Guo, X., Guo, P., Tong, Z., & Xu, X. (2024). Experimental Investigation of Cr12 Steel Under Electrostatic Minimum Quantity Lubrication During Grinding. Processes, 12(11), 2551. https://doi.org/10.3390/pr12112551