Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions
Abstract
:1. Introduction
2. Numerical Model
2.1. Mathematical Models
2.1.1. Governing Equations
2.1.2. NOx Generation Model
2.2. Computational Geometry and Mesh
2.2.1. Boiler Structure and Geometry
2.2.2. Meshing and Validation
2.3. Material Properties and Design Parameters of the Boiler
3. Results and Discussion
3.1. Model Validation
3.2. Furnace Parameter Distribution During Different Working Conditions
3.2.1. Flow Characteristics
3.2.2. Temperature Profile
3.2.3. Gas Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Fan, C. Analysis of Deep Peak Regulation and Its Benefit of Thermal Units in Power System With Large Scale Wind Power Integrated. Power Syst. Technol. 2017, 41, 2255–2263. [Google Scholar]
- Wang, C.; Liu, M.; Zhao, Y.; Qiao, Y.; Chong, D.; Yan, J. Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes. Energy 2018, 145, 734–746. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, J.; Chen, D.; Wang, Z.; Li, Q. Overall review of peak shaving for coal-fired power units in China. Renew. Sustain. Energy Rev. 2016, 54, 723–731. [Google Scholar] [CrossRef]
- Guo, J.-X.; Huang, C. Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050. Appl. Energy 2020, 259, 114112. [Google Scholar] [CrossRef]
- Wang, H.; Zou, C.; Hu, H.; Gu, G.; Dong, L.; Huang, Y.; Deng, S.; Li, S. Migration and emission characteristics of trace elements in coal-fired power plant under deep peak load regulation. Sci. Total Environ. 2023, 868, 161626. [Google Scholar] [CrossRef]
- Du, H.; Li, Z.; Liu, Z.; Zhang, M.; Huang, C.; Jiang, G.; Chen, Z.; Song, J.; Fang, F.; Su, J.; et al. Industrial measurement of combustion and NOx formation characteristics on a low-grade coal-fired 600MWe FW down-fired boiler retrofitted with novel low-load stable combustion technology. Fuel 2022, 321, 123926. [Google Scholar] [CrossRef]
- Hong, F.; Chen, J.; Wang, R.; Long, D.; Yu, H.; Gao, M. Realization and performance evaluation for long-term low-load operation of a CFB boiler unit. Energy 2021, 214, 118877. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, W.; Li, Y. Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler. Appl. Energy 2016, 177, 323–334. [Google Scholar] [CrossRef]
- Jin, W.; Si, F.; Kheirkhah, S.; Yu, C.; Li, H.; Wang, Y.O. Numerical study on the effects of primary air ratio on ultra-low-load combustion characteristics of a 1050 MW coal-fired boiler considering high-temperature corrosion. Appl. Therm. Eng. 2023, 221, 119811. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Li, L.; Zeng, L.; Li, Z. Achievement in ultra-low-load combustion stability for an anthracite-and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications. Energy 2020, 192, 116623. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, S.; He, X.; Ding, X.; Li, W.; Liu, P. Combustion stability and NOx emission characteristics of three combustion modes of pulverized coal boilers under low or ultra-low loads. Appl. Energy 2024, 353, 121998. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Zhang, H.; Huang, L.; Liu, Z.; Fan, W. Influences of ultra-low load operation strategies on performance of a 300 MW subcritical bituminous coal boiler. Appl. Therm. Eng. 2024, 256, 124037. [Google Scholar] [CrossRef]
- Wang, H.; Jin, H.; Yang, Z.; Deng, S.; Wu, X.; An, J.; Sheng, R.; Ti, S. CFD modeling of flow, combustion and NOx emission in a wall-fired boiler at different low-load operating conditions. Appl. Therm. Eng. 2024, 236, 121824. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, H.; Zhou, H.; Lei, L.; Duan, X. Improving the Performance of a 300 MW Down-Fired Pulverized-Coal Utility Boiler by Inclining Downward the F-Layer Secondary Air. Energy Fuels 2010, 24, 4857–4865. [Google Scholar] [CrossRef]
- Xie, X.-Q.; Yang, J.-G.; Zhu, C.-Y.; Liu, C.-H.; Zhao, H.; Wang, Z.-H. Numerical analysis of reasons for the CO distribution in an opposite-wall-firing furnace. J. Zhejiang Univ. Sci. A 2020, 21, 193–208. [Google Scholar] [CrossRef]
- Luo, R.; Fu, J.; Li, N.; Zhang, Y.; Zhou, Q. Combined control of secondary air flaring angle of burner and air distribution for opposed-firing coal combustion. Appl. Therm. Eng. 2015, 79, 44–53. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, H.; Wei, Y.; Lei, L.; Duan, X.; Zhou, H. Numerical simulations of the slagging characteristics in a down-fired, pulverized-coal boiler furnace. Fuel Process. Technol. 2010, 91, 88–96. [Google Scholar] [CrossRef]
- Li, X.; Zeng, L.; Zhang, N.; Chen, Z.; Li, Z.; Qin, Y. Effects of the air-staging degree on performances of a supercritical down-fired boiler at low loads: Air/particle flow, combustion, water wall temperature, energy conversion and NO emissions. Fuel 2022, 308, 121896. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J. Influence of operation of industrial boilers under low load on overheaters. Met. Power. 2001, 6, 47–48. [Google Scholar]
- Yuan, L. Numerical Simulation of Variable Load Combustion of Supercritical Pulverized Coal Boiler and Optimization of Air. Master’s Thesis, Southeast University, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Wang, D.; Yang, Z.; Ran, S.; Deng, J.; Li, Z. Numerical study and application of steady combustion under low load for inferior coal. Clean Coal Technol. 2023, 29, 181–187. (In Chinese) [Google Scholar]
- Tu, B.; Li, D.; Liao, W.; Lv, W.; Jin, F.; Yan, C.; Yin, Q.; Chen, Z.; Que, Z.; Kan, W.; et al. Simulation research on low load operation and environment performance of supercritical opposite combustion boiler. Electr. Power Technol. Environ. Prot. 2024, 40, 407–415. (In Chinese) [Google Scholar]
- Li, S.; Chen, Z.; He, E.; Jiang, B.; Li, Z.; Wang, Q. Combustion characteristics and NO formation of a retrofitted low-volatile coal-fired 330 MW utility boiler under various loads with deep-air-staging. Appl. Therm. Eng. 2017, 110, 223–233. [Google Scholar] [CrossRef]
- Liu, S. Numerical Simulation of Combustion Optimization for a 600MW Swirl-Opposed Firing Boiler. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2019. (In Chinese). [Google Scholar]
- Zhong, L.; Deng, J.; Sun, W.; Yuan, L.; Fang, Q.; Tan, P.; Zhang, C.; Chen, G. Effects of Burner Operation Mode on Performance of the Boiler Under Low Load Conditions. J. Chin. Soc. Power Eng. 2015, 35, 693–698. (In Chinese) [Google Scholar]
- Fang, Q.; Wang, H.; Chen, G.; Zhou, H. Numerical stimulation on effects of over fire air on the combustion characteristics in an ultra-supercritical boiler. J. Huazhong Univ. Sci. Tech. 2010, 38, 92–95. (In Chinese) [Google Scholar]
- Liu, W.; Yang, M.; Zhang, Y.; Li, Y.; Ying, X.; Huang, W. Improving the asymmetric phenomenon effects on the combustion characteristics in an opposed-fired pulverized coal boiler. Numer. Heat Transf. Part A Appl. 2023, 83, 790–813. [Google Scholar] [CrossRef]
- Ma, X.; Yang, M.; Zhang, Y. Analysis of Combustion Mechanism and Combustion Optimization of a 300 mw Pulverized Coal Boiler. Front. Heat Mass Transf. 2016, 7, 36. [Google Scholar] [CrossRef]
- Chen, H.; Fang, Y. Experimental study on economic improvement of updraft boiler under low load. Electr. Power Technol. Environ. Prot. 2024, 40, 160–167. (In Chinese) [Google Scholar]
- Zhang, X.; Chen, Z.; Zhang, M.; Zeng, L.; Li, Z. Combustion stability, burnout and NO emissions of the 300-MW down-fired boiler with bituminous coal: Load variation and low-load comparison with anthracite. Fuel 2021, 295, 120641. [Google Scholar] [CrossRef]
- Yuan, L.; Zhong, W.; Chen, X.; Li, J.; Liu, G.; Tian, W. Three-dimensional numerical simulation of variable load combustion of supercritical coal-fired boiler for deep peak load regulation. J. Southeast Univ. 2019, 49, 535–541. (In Chinese) [Google Scholar]
- Lv, H.; Tong, J.; Qi, X.; Liu, J. Numerical Simulation of Low-load Operation Optimization for Opposite Firing Boilers. J. Eng. Therm. Energy Power 2020, 35, 89–94. (In Chinese) [Google Scholar]
- Ren, Y.; Mahinpey, N.; Freitag, N. Kinetic model for the combustion of coke derived at different coking temperatures. Energy Fuels 2007, 21, 82–87. [Google Scholar] [CrossRef]
- Cheng, P. Two-dimensional radiating gas flow by a moment method. AIAA J. 1964, 2, 1662–1664. [Google Scholar] [CrossRef]
- Zhao, K.T.; Zhou, Q.; Xu, T. The Law of HCN and NH3 Escape during the Pyrolysis of Model Compounds of Coal. J. Eng. Therm. Energy Power 2004, 19, 246–248+322–323. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Luo, C.; Zhang, L.; Xu, Y.; Wu, Y.; Liu, J.; Duan, Y.; Zheng, C. Investigation on the thermodynamic calculation of a 35 MWth oxy-fuel combustion coal-fired boiler. Int. J. Greenh. Gas Control 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, W.; Li, J.; Liu, L.; Liu, G.; Tian, W. Three-dimensional numerical stimulation on optimization air distribution for combustion of ultra-supercritical boiler. J. Southeast Univ. 2018, 48, 794–800. (In Chinese) [Google Scholar]
- Cao, Y. Numerical Simulation of Low NOx Operation Optimization for a 660 MW Opposed Swirling Fired Utility Boiler. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2014. (In Chinese). [Google Scholar]
- Mao, R.; Li, Y.; Ren, L.; Zhang, P.; Ma, L.; Chen, X.; Zhang, G.; Fang, Q.; Zhang, C. Numerical stimulation on burner burnout characteristics and optimization in a 600 MW swirling oppsed boiler. Clean Coal Technol. 2022, 28, 117–124. (In Chinese) [Google Scholar]
- Nowak, K.; Rabczak, S. Co-combustion of biomass with coal in grate water boilers at low load boiler operation. Energies 2021, 14, 2520. [Google Scholar] [CrossRef]
- Tan, P.; Tian, D.; Fang, Q.; Ma, L.; Zhang, C.; Chen, G.; Zhong, L.; Zhang, H. Effects of burner tilt angle on the combustion and NOX emission characteristics of a 700 MWe deep-air-staged tangentially pulverized-coal-fired boiler. Fuel 2017, 196, 314–324. [Google Scholar] [CrossRef]
- Li, J.; Yuan, S.; Liang, Q. Formation of HCN and NH3 during the Rapid Pyrolysis of Coal and Model Compounds. J. Chem. Eng. Chin. Univ. 2011, 25, 55–60. [Google Scholar]
- Xu, M.; Azevedo, J.; Carvalho, M. Modelling of the combustion process and NOx emission in a utility boiler. Fuel 2000, 79, 1611–1619. [Google Scholar] [CrossRef]
- Habib, M.; Elshafei, M.; Dajani, M. Influence of combustion parameters on NOx production in an industrial boiler. Comput. Fluids 2008, 37, 12–23. [Google Scholar] [CrossRef]
- Kuang, M.; Li, Z. Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers. Energy 2014, 69, 144–178. [Google Scholar] [CrossRef]
Items | Model |
---|---|
Gas phase turbulence | Standard k-ε model |
Radiation | P-1 |
Species | Eddy dissipation |
Discrete phase (DPM) | Stochastic Particle Trajectory |
Volatile analysis | Single-rate devolatilization model |
Combustion of coke | Kinetics/diffusion limited model |
Proximate Analysis | Ultimate Analysis | Qnet,ar/(MJ kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC a | C | H | O a | N | S | |
7.20 | 29.70 | 25.25 | 37.85 | 51.94 | 3.60 | 6.35 | 0.96 | 0.25 | 20.873 |
SiO2 | Al2O3 | Fe2O3 | CaO | TiO2 | MgO | Na2O | K2O | SO3 | MnO2 | Other Substances |
---|---|---|---|---|---|---|---|---|---|---|
55.24% | 31.33% | 4.66% | 1.86% | 0.87% | 0.62% | 0.58% | 0.99% | 1.29% | 0.06% | 2.50% |
Parameters | Value |
---|---|
Superheated steam flow rate (t h−1) | 1970 |
Superheated steam outlet pressure (MPa) | 25.40 |
Superheated steam outlet temperature (°C) | 571.5 |
Reheat steam flow rate (t h−1) | 1649 |
Temperature of feed water (°C) | 293.8 |
Pressure of feed water (MPa) | 28.87 |
Coal consumption rate (t h−1) | 258 |
Excess air coefficient | 1.19 |
Parameter | Simulated Value | Calculated Value | Relative Error (%) |
---|---|---|---|
Gas temperature at the outlet of the furnace (°C) | 1250.1 | 1220.7 | 2.40 |
Gas temperature at the outlet of the screen superheater (°C) | 1112.5 | 1098.2 | 1.26 |
Heat load of radiant heating surface (kW m−2) | 129.7 | 125.6 | 3.26 |
Oxygen content at furnace outlet (%) | 2.45 | 2.54 | −3.54 |
Case | Boiler Load (%) | Operating Burners | Excess Air Coefficient | Primary Air (kg s−1) | Secondary Air (kg s−1) |
---|---|---|---|---|---|
Case 1 | 25 | ABC (OM1) | 1.4 | 72.70 | 75.06 |
Case 2 | 25 | AC (OM2) | 1.4 | 72.70 | 75.06 |
Case 3 | 35 | ABC (OM1) | 1.35 | 82.36 | 85.72 |
Case 4 | 35 | AC (OM2) | 1.35 | 82.36 | 85.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, P.; Li, J.; Zhu, X.; Jing, D.; Deng, L. Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions. Processes 2024, 12, 2496. https://doi.org/10.3390/pr12112496
Chong P, Li J, Zhu X, Jing D, Deng L. Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions. Processes. 2024; 12(11):2496. https://doi.org/10.3390/pr12112496
Chicago/Turabian StyleChong, Peian, Jianning Li, Xiaolei Zhu, Dengke Jing, and Lei Deng. 2024. "Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions" Processes 12, no. 11: 2496. https://doi.org/10.3390/pr12112496
APA StyleChong, P., Li, J., Zhu, X., Jing, D., & Deng, L. (2024). Numerical Study on Combustion Characteristics of a 600 MW Boiler Under Low-Load Conditions. Processes, 12(11), 2496. https://doi.org/10.3390/pr12112496