A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents
2.3. Samples
2.4. Determination of Chloride in Crude Oil for Comparison Purposes and Accuracy Evaluation
2.4.1. Salt Determination by ASTM D 6470
2.4.2. Chloride Determination Using DSS-EA
2.5. Sample Preparation and Colorimetric Chloride Determination
3. Results and Discussion
3.1. General Optimization of Sample Preparation for Colorimetric Chloride Determination: Optimizing the Conditions for an Aqueous Extract
3.2. Colorimetric Analysis of Chloride in Crude Oil Aqueous Extracts: Combining Miniaturized Extraction Protocol and the Portable Device for Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groysman, A. Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2006; Volume 5, p. 953. [Google Scholar]
- ASTM D 6470; Standard Test Method for Salts in Crude Oil (Potentiometric Method). American Society for Testing Materials: West Conshohocken, PA, USA, 2015.
- ASTM D 3230; Standard Test Method for Salts in Crude Oil (Electrometric Method). American Society for Testing Materials: West Conshohocken, PA, USA, 2019.
- Morigaki, M.K.; Chimin, R.Q.F.; Sad, C.M.S.; Filgueiras, P.R.; Castro, E.V.R.; Dias, J.C.M. Salinity of crude oil: Optimization of methodology and new method for extraction of salt in petroleum. Quim. Nova 2010, 33, 607–612. [Google Scholar] [CrossRef]
- Moraes, D.P.; Antes, F.G.; Pereira, J.S.F.; Santos, M.D.F.P.; Guimarães, R.C.L.; Barin, J.S.; Mesko, M.F.; Paniz, J.N.G.; Flores, E.M.M. Microwave-assisted procedure for salinity evaluation of heavy crude oil emulsions. Energy Fuels 2010, 24, 2227–2232. [Google Scholar] [CrossRef]
- Robaina, N.F.; Feiteira, F.N.; Cassella, A.R.; Cassella, R.J. Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking. J. Chromatogr. A 2016, 1458, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.F.; Cassella, A.R.; Cassella, R.J. Microwave-Assisted Extraction of Chloride Followed by Ion Chromatography as an Alternative to the ASTM D6470 Method for the Determination of Crude Oil Salinity. Energy Fuels 2020, 34, 6844–6850. [Google Scholar] [CrossRef]
- Antes, F.G.; dos Santos, M.D.P.; Guimaraes, R.C.L.; Paniz, J.N.G.; Flores, E.M.M.; Dressler, V.L. Heavy crude oil sample preparation by pyrohydrolysis for further chlorine determination. Anal. Methods 2011, 3, 288–293. [Google Scholar] [CrossRef]
- Pereira, J.S.F.; Mello, P.A.; Moraes, D.P.; Duarte, F.A.; Dressler, V.L.; Knapp, G.; Flores, É.M.M. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 554–558. [Google Scholar] [CrossRef]
- Nelson, J.; Poirier, L.; Lopez-Linares, F. Determination of chloride in crude oils by direct dilution using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). J. Anal. At. Spectrom. 2019, 34, 1433–1438. [Google Scholar] [CrossRef]
- Fortuny, M.; Silva, E.B.; Filho, A.C.; Melo, R.L.F.V.; Nele, M.; Coutinho, R.C.C.; Santos, A.F. Measuring salinity in crude oils: Evaluation of methods and an improved procedure. Fuel 2008, 87, 1241–1248. [Google Scholar] [CrossRef]
- Higa, K.M.; Guilhen, A.; Vieira, L.C.S.; Carvalho, R.M.; Poppi, R.J.; Baptistão, M.; Gobbi, A.L.; Lima, R.S.; Hantao, L.W. Simple solid-phase extraction method for high efficiency and low-cost crude oil demulsification. Energy Fuels 2016, 30, 4667–4675. [Google Scholar] [CrossRef]
- Sad, C.M.S.; Santana, Í.L.; Morigaki, M.K.; Medeiros, E.F.; Castro, E.V.R.; Santos, M.F.P.; Filgueiras, P.R. New methodology for heavy oil desalination. Fuel 2015, 150, 705–710. [Google Scholar] [CrossRef]
- Diehl, L.O.; Moraes, D.P.; Antes, F.G.; Pereira, J.S.F.; Santos, M.F.P.; Guimarães, R.C.L.; Paniz, J.N.G.; Flores, E.M.M. Separation of heavy crude oil emulsions using microwave radiation for further crude oil analysis. Sep. Sci. Technol. 2011, 46, 1358–1364. [Google Scholar] [CrossRef]
- Doyle, A.; Saavedra, A.; Tristao, M.L.B.; Nele, M.; Aucélio, R.Q. Direct chlorine determination in crude oils by energy dispersive X-ray fluorescence spectrometry: An improved method based on a proper strategy for sample homogenization and calibration with inorganic standards. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 368–372. [Google Scholar] [CrossRef]
- Hajian, R.; Oroojloo, A.H.; Mousavian, S.S.; Shams, N. Determination of Sodium Chloride in Crude Oil of Gachsaran County Oil Wells. Asian J. Chem. 2011, 23, 4223–4224. [Google Scholar]
- de Oliveira Souza, M.; Ribeiro, M.A.; Carneiro, M.T.W.D.; Athayde, G.P.B.; de Castro, E.V.R.; da Silva, F.L.F.; Matos, W.O.; de Queiroz Ferreira, R. Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract. Fuel 2015, 154, 181–187. [Google Scholar] [CrossRef]
- Ramos, A.C.O.P.; Caldeira, G.R.F.; Nunes, C.R.O.; Terra, W.S.; Souza, M.O. Optimization of extraction induced by emulsion breaking variables for subsequent determination of crude oil salinity by ion chromatography. J. Braz. J. Anal. Chem. 2020, 7, 31–39. [Google Scholar] [CrossRef]
- Aly, A.A.; Górecki, T. Green approaches to sample preparation based on extraction techniques. Molecules 2020, 25, 1719. [Google Scholar] [CrossRef]
- Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green analytical chemistry: Social dimension and teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. [Google Scholar] [CrossRef]
- Chemat, F.; Garrigues, S.; de la Guardia, M. Portability in analytical chemistry: A green and democratic way for sustainability. Curr. Opin. Green Sustain. Chem. 2019, 19, 94–98. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; Esteve-Turrillas, F.A.; de la Guardia, M. Green extraction techniques in green analytical chemistry. TrAC Trends Anal. Chem. 2019, 116, 248–253. [Google Scholar] [CrossRef]
- Bizzi, C.; Pedrotti, M.; Silva, J.; Barin, J.; Nóbrega, J.; Flores, E. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J. Anal. At. Spectrom. 2017, 32, 1448–1466. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Guardia, M.; Garrigues, S. Handbook of Green Analytical Chemistry, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Tobiszewski, M.; Mechlińska, A.; Namieśnik, J. Green analytical chemistry—Theory and practice. Chem. Soc. Rev. 2010, 39, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; de la Guardia, M. Green Spectroscopy: A Scientometric Picture. Spectrosc. Lett. 2009, 42, 277–283. [Google Scholar] [CrossRef]
- Namieśnik, J. Green analytical chemistry—Some remarks. J. Sep. Sci. 2001, 24, 151–153. [Google Scholar] [CrossRef]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M.; Yin, L. Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Diniz, P.H.G.D. Chemometrics-assisted color histogram-based analytical systems. J. Chemom. 2020, 34, e3242. [Google Scholar] [CrossRef]
- Baumann, L.; Librelotto, M.; Pappis, C.; dos Santos, R.B.; Santos, R.O.; Helfer, G.A.; Lobo, E.A.; da Costa, A.B. Uso do aplicativo PhotoMetrix no monitoramento da concentração de flúor em sistemas alternativos de abastecimento de água. Águas Subterrâneas 2019, 33. [Google Scholar] [CrossRef]
- McCracken, K.; Yoon, J.-Y. Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Anal. Methods 2016, 8, 6591–6601. [Google Scholar] [CrossRef]
- Costa, A.B.; Helfer, G.A.; Barbosa, J.L.V.; Teixeira, I.D.; Santos, R.O.; Santos, R.B.; Voss, M.; Schlessner, S.K.; Barin, J.S. PhotoMetrix UVC: A new smartphone-based device for digital image colorimetric analysis using PLS regression. J. Braz. Chem. Soc. 2021, 32, 675–683. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. TrAC Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Holkem, A.P.; Voss, M.; Schlesner, S.K.; Helfer, G.A.; Costa, A.B.; Barin, J.S.; Müller, E.I.; Mello, P.A. A green and high throughput method for salt determination in crude oil using digital image-based colorimetry in a portable device. Fuel 2021, 289, 119941. [Google Scholar] [CrossRef]
- Silva, J.S.; Diehl, L.O.; Picoloto, R.S.; Flores, E.M.M.; Mesko, M.F.; Barin, J.S.; Duarte, F.A. A solid sampling approach for direct determination of Cl and S in flour by an elemental analyzer. Food Chem. 2021, 344, 128671. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J.; Pena-Pereira, F. A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem. 2015, 17, 4773–4785. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2015, 18, 288–296. [Google Scholar] [CrossRef]
- Enders, M.S.P.; Gomes, A.O.; Oliveira, R.F.; Guimaraes, R.C.L.; Mesko, M.F.; Flores, E.M.M.; Müller, E.I. Determination of chlorine in crude oil by high-resolution continuum source graphite furnace molecular absorption spectrometry using AlCl, InCl, and SrCl molecules. Energy Fuels 2016, 30, 3637–3643. [Google Scholar] [CrossRef]
- Oliveira, I.K.S.; Medeiros, R.L.S.; Silva, D.R.; Maranhão, T.A. Determination of chlorine in crude oil emulsified via the MgCl molecule by HR-CS MAS. J. Braz. Chem. Soc. 2018, 29, 571–578. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
Sample | Water, % (w w−1) | Sediment, % (w w−1) | Salt, % (w w−1) a | Chloride, mg g−1 |
---|---|---|---|---|
CO1 | 2.52 ± 0.05 | 1.15 ± 0.12 | 0.685 ± 0.067 | 4.16 ± 0.41 |
CO2 | 2.77 ± 0.16 | 0.96 ± 0.17 | 0.915 ± 0.084 | 5.56 ± 0.51 |
CO3 | 8.22 ± 0.02 | 0.558 ± 0.032 | nd | nd |
CO4 | 5.55 ± 0.03 | 0.864 ± 0.014 | nd | nd |
CO5 | 8.74 ± 0.14 | 3.42 ± 0.14 | 2.78 ± 0.09 | 16.8 ± 1.9 |
CO6 | 3.48 ± 0.01 | 0.708 ± 0.073 | 0.539 ± 0.038 | 3.27 ± 0.23 |
CO7 | 6.49 ± 0.10 | 2.33 ± 0.19 | 0.950 ± 0.09 | 5.77 ± 0.56 |
CO8 | 2.15 ± 0.01 | 0.168 ± 0.012 | 0.560 ± 0.132 | 3.40 ± 0.80 |
Condition | Extraction Efficiency, % | |
---|---|---|
Crude Oil CO1 | Crude Oil CO2 | |
Mineral oil | 69.1 ± 4.7 | 10.5 ± 1.7 |
Kerosene | 43.4 ± 3.3 | 30.7 ± 4.5 |
Toluene | 71.0 ± 4.2 | 53.0 ± 0.1 |
Xylene | 93.7 ± 4.4 | 48.2 ± 6.0 |
Ethyl acetate | 97.6 ± 3.8 | 98.1 ± 0.8 |
Acetone | 99.2 ± 5.0 | 106 ± 5 |
Isopropyl alcohol | 108 ± 4 | 97.4 ± 3.7 |
Without solvent | 23.3 ± 4.0 | 0.964 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holkem, A.P.; Agostini, G.; Costa, A.B.; Barin, J.S.; Mello, P.A. A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes 2024, 12, 2425. https://doi.org/10.3390/pr12112425
Holkem AP, Agostini G, Costa AB, Barin JS, Mello PA. A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes. 2024; 12(11):2425. https://doi.org/10.3390/pr12112425
Chicago/Turabian StyleHolkem, Alice P., Giuliano Agostini, Adilson B. Costa, Juliano S. Barin, and Paola A. Mello. 2024. "A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis" Processes 12, no. 11: 2425. https://doi.org/10.3390/pr12112425
APA StyleHolkem, A. P., Agostini, G., Costa, A. B., Barin, J. S., & Mello, P. A. (2024). A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis. Processes, 12(11), 2425. https://doi.org/10.3390/pr12112425